Problem 1 (4p)

- **1.** Analyse the Circuit_T in Fig. 1 using method I on Boole's algebra to obtain its truth table T = f(A, B, C, D).
- **2.** We want to build a $Circuit_T$ prototype in the lab, what is maximum frequency of the generator f_{MAX} that we can use to drive an input? Calculate the power consumption when the circuit is running at such frequency. Calculate both parameters for implementations using TTL_LS gates (Fig. 4).
- 3. Invent the truth table using a plan A based on only NOR2 gates.
- **4.** Invent the truth table using a plan C2 based on the method of decoders (MoD). How to expand *Dec_2_4* to generate the binary decoder required in this application? How many VHDL files are required?

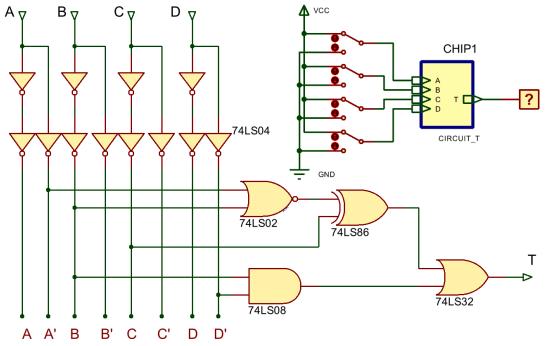


Fig. 1. Combinational circuit T = f(A, B, C, D).

Problem 2 (2p)

- 1. Solve the arithmetic operations below using 9-bit 2C (two's complement) binary integer number representation. Indicate when there is an overflow situation (OV flag). Which is operands and result range?
 - a) Addition: A = (-216); B = (+125)
 - b) Subtraction: A = (-216); B = (+125)
- **2.** Draw the symbol and invent an *ALU_9bit* using plan C2 capable of performing arithmetic (additions, subtractions) and logic (AND, NOR) operations. Calculate the outputs for these vectors and complete the table below with the four operations:
 - c) NOR: A = "101010101"; B = "100110001"
 - d) AND: **A** = "101010101" ; **B** = "010101111"

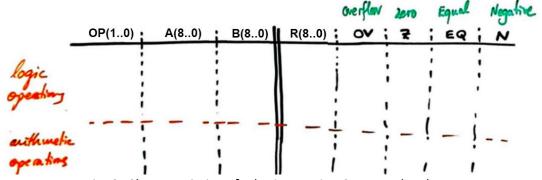


Fig. 2. Characteristics of a logic gate in LS-TTL technology.

Problem 3 (4p)

The entity represented in Fig. 3a is an electronic dice decoder, a combinational block for adapting the radix-2 numbers from 1 to 6 to a 7-LED display that has the typical layout shown in Fig. 3b. The codes X = "000" and X = "111" generate don't care outputs.

- **1.** Deduce the circuit's truth table for all the outputs $L_i = f(E_L, X)$ and its canonical equations.
- 2. As shown in the Fig. 3a, we connect LED active-high at each circuit output ($V_{AKQ} = 1.9 \text{ V}$). Calculate the limiting resistors to drive each LED with $I_{DQ} = 600 \mu A$ in the worst-case scenario using LS-TTL logic. Calculate the power consumption of the full circuit for the input vector: $\mathbf{E_L} = \mathbf{'0'}$, $\mathbf{X} = \mathbf{'110'}$.
- **3.** If the circuit's technology is LS-TTL, how many millions of operations per second (mops) is the circuit capable of performing? Which is the power consumption at such speed?
- **4.** Describe the schematic or flowchart to be able to translate the truth table into VHDL using plan B. Which will be the minimum *Min Pulse* value for ModeSim gate-level simulations?

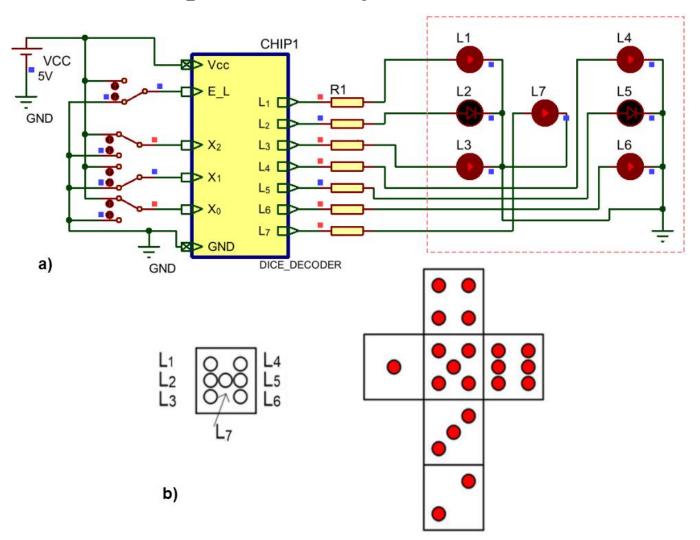


Fig. 3. Dice decoder chip.

Symbo	Paramete	er	M	in	Nom	Max	(Jnits		
V_{CC}	Supply Voltage		4.	75	5	5.25	5	V	74L	S04
V _{IH}	HIGH Level Input Voltage		2	2				V		
V _{IL}	LOW Level Input Voltage					0.8		V		>> —
I _{OH}	HIGH Level Output Current					-0.4	1	mA		
I _{OL}	LOW Level Output Current					8		mA		
Symbol	Parameter		Conditions				Min	Тур	Max	Units
VI	Input Clamp Voltage		$V_{CC} = Min, I_I = -18 \text{ mA}$						-1.5	٧
V _{OH}	HIGH Level Output Voltage		$V_{CC} = Min, I_{OH} = Max,$ $V_{IL} = Max$				2.7	3.4		٧
V _{OL}	LOW Level Output Voltage		$V_{CC} = Min, I_{OL} = Max,$ $V_{IH} = Min$				0.35	0.5	V	
		İ	I _{OL} =	4 mA,	$V_{CC} = N$	/lin		0.25	0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$						0.1	mA	
I _{IH}	HIGH Level Input Current			$V_{CC} = Max, V_I = 2.7V$					20	μА
I _{IL}	LOW Level Input Current			$V_{CC} = Max, V_I = 0.4V$					-0.36	mA
I _{OS}	Short Circuit Output Current		V _{CC} = Max				-20		-100	mA
I _{CCH}	Supply Current with Outputs HI	GH	V _{CC} = Max					1.2	2.4	mΑ
I _{CCL}	Supply Current with Outputs LO	W	V _{CC} = Max				3.6	6.6	mA	
Symbol	Parameter C _L = 50 pF	Min	Max	Units	<u>-</u>				V cc	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	4	15	ns		PULSE NERATOR		NPUT	14 OUTF	PUT
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	4	15	ns				7	GND	$\bar{\mathbb{T}}_{c^{r}}$

Fig. 4. Characteristics of a logic gate in LS-TTL technology.

NOTE for all problems and questions: draw circuits, sketches or diagrams, explain as clearly as possible what you do and how you are inventing circuits or processing calculations as you did when you wrote your project reports. Justify your results.