## CSD laboratory P_Ch1: 9-bit arithmetic unit

SP1.4 Designing a standard arithmetic circuit type 74LS85 using hierarchical structures and completing P_Ch1
I. Specifications of Comp_9bit

The aim of this preparatory laboratory assignment is to invent a 9-bit radix-2 comparator (Comp_9bit) using hierarchical structures based on components Comp_1bit. In this way, you can practise how to develop plan C2 and complete this component to be used in P_Ch1 as Chip2.


Fig. 1 Comp_9bit symbol.
II. Plan C2 using components and signals.

Draw a schematic plan C2 for the Comp_9bit using Comp_1bit components and logic if necessary.
III. Development. Synthesis.

Translate to VHDL the plan and write the Comp_9bit.vhd. Run a synthesis project and examine RTL and technology schematics.

Target chip: MAX II EPM2210F324C3 or Cyclone IV EP4CE115F29C7N
IV. Test and verification using VHDL testbench.

Organise a VHDL testbench Comp_9bit_tb.vhd. Run a ModelSim functional simulation and examine results from logic analyser to determine whether the circuit works as expected.

## Completing P_Ch1

I. Specifications of Arith_9bit

Complete P_Ch1 using Chip1, Chip2 and Chip3 and all their internal components in Fig. 2 reporting all the previous subprojects and recording a video explaining how such hierarchical circuit is developed and tested.
II. Planning

The schematic plan of the P_Ch1 is already represented in Fig. 2.


Fig. 2 Top architecture for $\mathrm{P}_{-} \mathrm{Ch} 1$ arithmetic unit. How many VHDL files contains this project?
III. Development. Synthesis.

Translate to VHDL the plan in Fig. 2 and write the Arith_9bit.vhd. Run a synthesis project and examine RTL and technology schematics.
Target chip: MAX II EPM2210F324C3 or Cyclone IV EP4CE115F29C7N
IV. Test and verification using VHDL testbench.

Organise a VHDL testbench Arith_9bit_tb.vhd. Run a ModelSim functional simulation and examine results from logic analyser to determine whether the circuit works as expected.

