SP3_2 Implementing the control unit (FSM) and completing design phase #1

I. Specifications

The aim of this preparatory laboratory assignment is to analyse the given circuit for the programmable timer and complete hardware and software.

Fig. 1 Programmable timer.

II. Planning.

Study all the project sections and draw the truth table and its equivalent flowchart for state_logic()

- III. Development, debugging
- IV. Test

Write the *state_logic()* C code, start a new MPLABX project *Prog_Timer_prj*, compile and run and verify in Proteus that your circuit work as expected.

V. Measurements and questions

- Measure the circuit precision in timing periods when for instance PC = 3; PC = 3000
- Measure using breakpoints how long does it takes to execute the main loop.
- Measure how long does it takes to execute ISR()
- What happens if OSC crystal is replaced by 4 MHz?
- How to make TRG sensitive to rising edges?

Annex

Paper work on diagrams, sketches, flowcharts and materials for studying the project in detail and completing it. Example of hardware-software diagram:

RAM variables

Initialising the system

/ init. system () discussion (complete the discussion)

write.outputs() discussion

Interrupt service routine

- · Clear hardware flag means that the system can be interrupted again by the same mechanism
- · Softwere flag variables will be used in main programme and cleared once used

Counter structure in the datapath, a software/algorithmic/behavioural translation of the datapath operating resources in the hardware-software diagram.

State logic truth table and flowchart

Oscilloscope measurements and watch window for debug.

