UPC. EETAC. Bachelor degree, Course 2A. Digital Circuits and Systems (<u>CSD</u>). Dr F. J. Robert. Grades will be available online on June 29th. Questions about the exam at <u>office time</u>. *Exam 2.* June 20th, 2022

- 1. Analyse the circuit in Fig. 1 to determine the output Q(2..0) completing an example timing diagram.
- 2. Explain why asynchronous circuits have disadvantages respecting synchronous circuits.
- 3. Explain how many VHDL files are necessary to develop and simulate the circuit using EDA tools.
- **4.** If the propagation time of a logic gate is $t_P = 4.2$ ns, discuss and estimate the circuit's maximum speed.

Problem 2.

Let us design a synchronous two digits BCD modulo 37 [00, 01, 02, ..., 09, 10, 11, ..., 36, 00, 01, ...] up and down counter for an electronic roulette as shown in Fig. 2. We will follow structural plan C2 using VHDL tools and counter chaining and truncation techniques using the standard *Counter_mod16* represented in Fig. 3 and other combinational components and logic. A decoder will translate BCD code to one-hot for driving high the 37 LED.

Fig. 2. Electronic roulette. The wheel have a zero (house edge), and numbers from 1 to 36. The odds of winning are thus 37 to one (2.7%).

- 1. Draw the top schematic of the application *roulette*.
- **2.** Phase #1. Invent the units up counter [0, 1, 2, ..., 8, 9, 0, 1, ...] using count truncation.

mahaanana ananatian afta

- 3. Phase #2. Invent the BCD up counter modulo 37.
- **4.** Phase #3. Enhance the previous design so that it can be reversible (up and down).

LD	CE	UD_L	Q.	Synchronous operation arter	
				the CLK's rising edge	_
1	х	х	Din	Parallel load (register data)	
0	0	x	Q	Do nothing (inhibit)	Fig. 3 Counter_mod16
0	1	1	(Q+1)mod16	Up counting in binary	symbol and
0	1	0	(Q-1)mod16	Down counting in binary	function table.

TC16 = '1' when CE = '1' and $[(Q = 15 and UD_L = '1') or (Q = 0 and UD_L = '0')]$; '0' otherwise

(3.5p)

Problem 3.

Design the interface for a portable CD player using a PIC18F4520 microcontroller as shown in Fig. 4.

1. Draw and explain the hardware-software diagram if we propose the FSM state diagram in Fig. 5 for running the application. Explain the difference between variables and flag variables.

Fig. 5. CD player FSM state diagram.

- 2. Explain how to poll (read) the switch Open (Op) in *read_inputs()* connected to RC4 using bitwise operations. Explain how to measure how many times per second is this switch read.
- **3.** The CD motor is connected at pin RB6. The pause LED is connected at pin RA2. Explain how to drive these outputs in *write_outputs()*.
- **4.** Explain the external interrupt mechanism for connecting Play/pause button at RB1/INT1 and Stop button at RB2/INT2 pin. Explain the general software flowchart for this application and how the *ISR()* is used.
- 5. Explain how to configure port pins and interrupts in *init_system()*.
- 6. Draw the *state_logic()* truth table and its equivalent flowchart ready for translation to C language.
- 7. Explain how to connect and program the LCD display to show ASCII messages on the screen.
- **8.** Configure and program TMRO represented in Fig. 6 to generate a squared 2.5 Hz signal so the LED will be blinking intermittently when at *Stopped* state. Explain whether new states are required.

