## Exam solution ideas

## Problem 1

1. Method 1 on algebraic logic equations from any P1 project analysis. Solve the same circuit using method 2, method 3 or method 4 and compare solutions. Method 3 in LAB1.2 shows how to translate equations into VHDL.
2. Propagation delay: $\underline{L 4.3}$.
3. Power consumption $\underline{L 4.3}$ and noise margins L1.6.
4. Method 1 from any P1 project analysis.
5. Method 1 from any P1 project analysis.
6. Only-NOR and only-NOR2 circuits L1.5.

## Problem 2

7-8 This is comparator for radix-2 (L3.1) and two's complement integers (L4.1) proposed in D1.17.
9-10 How to build chained comparators (L3.2, plan C2) and how to test them can be found in several example tutorial projects:

Plan C2: hierarchical structure
Comp_1bit using the MoM
Comp_4bit
Comp_10bit

## Problem 3

11 Designing circuits using a single-file flat architecture in Plan B is studied in L2.3, LAB2, and and truth table and flowcharts examples are found in many projects

Plan B: behavioural, truth table
MUX 8, Lab2
Dual_MUX_4
Dec 3 _8
Hex 7seg decoder
Enc_10_4
Dec_4_16
Quad_MUX_2 / Quad_MUX_4
7ank level meter
Bin_BCD_6bit
BCD bin mod40

## Comp_1bit

Adder_1bit

12-13 MoD and decoder expansion examples is in L3.3.
14 MoM is also in L3.3.
15 This plan C2 example shows how to expand multiplexers: MUX 8
16 Driving LED is found in $\underline{L 2.4}$

## Problem 4

17-18-19 The highlighted project P 4 shows the design and simulation of an adder/subtractor for integer numbers.

20 Gate-level and timing analyser tools are proposed in LAB4. The basics on propagation delays through a chain of multiple components is explained in L4.3.

