1.

$$
\begin{aligned}
& K=m_{0}+m_{1}+m_{4}+m_{7}+m_{14}+m_{14} \\
& K=\left(m_{0}+m_{1}+m_{4}+m_{7}+\mu_{11}+m_{14}\right)^{\prime \prime}=\left(m_{0}^{\prime} \cdot m_{1}^{\prime} \cdot m_{4}^{\prime} \cdot m_{7}^{\prime} \cdot m_{11}^{\prime} \cdot m_{14}^{\prime}\right)^{\prime} \text { only NoND } \\
& k=\left(x_{3}^{\prime} \cdot x_{2}^{\prime} \cdot x_{1}^{\prime} \cdot x_{0}^{\prime}+x_{3}^{\prime} \cdot x_{2}^{\prime} x_{1}^{\prime} x_{0}+x_{3}^{\prime} \cdot x_{2} \cdot x_{1}^{\prime} \cdot x_{0}^{\prime}+x_{3}^{\prime} x_{2} x_{1} x_{0}+x_{3} x_{2}^{\prime} x_{1} x_{0}+x_{3} x_{2} x_{1} x_{0}^{\prime}\right)^{\prime \prime} \\
& k=\left(\left(x_{3}^{\prime} \cdot x_{2}^{\prime} \cdot x_{1}^{\prime} x_{0}\right)^{\prime} \cdot\left(x_{3}^{\prime} \cdot x_{2}^{\prime} x_{1}^{\prime} \cdot x_{0}\right)^{\prime} \cdot\left(x_{3}^{\prime} x_{2} x_{1}^{\prime} x_{0}^{\prime}\right)^{\prime} \cdot\left(x_{3}^{\prime} \cdot x_{2} \cdot x_{i} x_{0}\right)^{\prime} \cdot\left(x_{3} x_{2}^{\prime} \cdot x_{1} \cdot x_{0}^{\prime}\right) \cdot\left(x_{3} x_{2} x_{1} x_{0}^{\prime}\right)^{\prime}\right)^{\prime} \\
& m_{1}^{\prime}=\left(\left(x_{3}^{\prime} \cdot x_{2}^{\prime}\right)^{\prime \prime} \cdot\left(x_{1}^{\prime} \cdot x_{0}\right)^{\prime \prime}\right)^{\prime} \\
& m_{1}^{\prime}=\left(\left(x_{3}^{\prime} \cdot\left(x_{2}^{\prime}\right)\right)^{\prime} \cdot\left(\left(x_{1}^{\prime} \cdot x_{0}^{\prime}\right)^{\prime}\right)\right.
\end{aligned}
$$

Final 6-inpot NAND

2. We can imagine the circuit driven with stimulus that make all internal gates switching

- We assume all gater switch at f and all gates associated to a $C_{L}=C_{p d}$
$f_{\text {lax }} \leqslant \frac{1}{2 \cdot t_{p}}=4.17 \mathrm{MHz}$

3.

Min_Pulse minimum value for simulations or laboratory experimentation cannot be lower than t_{p}. If Min_Pulse < t_{p} digital outputs are never reaching stable digital values $V_{\text {он }}$ and $V_{\text {ot }}$.

5.

Methed of deaders

$k=f\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=m_{0}+m_{1}+m_{9}+m_{7}+m_{11}+m_{19}$

6.

When $N=\varnothing$ ' radix-2 numbers longest number is
7. Use the calculator to calculate radix 2 numbers. Data size is 12 bit. Apply the $2 C$ convention for integers.

$$
\begin{aligned}
& (36)_{10}=(100100)_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +2030 \equiv(\varnothing 111111 \varnothing 111 \varnothing) \\
& \begin{array}{r}
-2030 \equiv 100000010001 \\
+1
\end{array} \\
& (\boxed{100000010010})_{2 C} \\
& \left\{\begin{array}{l}
(157)_{10}=(10011101)_{2} \\
(3571)_{10}=(110111110011)_{2}
\end{array}\right. \\
& (000010011101)_{2} \\
& \text { Twelve wires }
\end{aligned}
$$

8. Min_Pulse $=105 \mathrm{~ns}$

$$
2^{12} \cdot 2^{12} \cdot 2^{1} \cdot 2^{4}=2^{26}=67108869 \text { combinations }
$$

automating the test beach for generating all test rectors, it will take:

$$
\text { runtime }=2^{26} \cdot M_{\text {in }} P_{0} l_{x}=7.05 \mathrm{~s}
$$

9. Plan C2 allows top-down architecture organisation using simpler components. In a second phase, circuits can be optimised reducing the number of components and multiplexers.

10. Solved for 8-bits at P4: https://digsys.upc.edu/csd/P04/P4.html
11. Solved at this P3 tutorial: https://digsys.upc.edu/csd/P03/Comp 4bitC2/Comp 4bit.html
12. EQ is a bitwise XOR operation followed by a 12 -input NOR gate.

First level of gates:
$\mathrm{K}_{11}=\mathrm{A}_{11} \oplus \mathrm{~B}_{11} ; \mathrm{K}_{10}=\mathrm{A}_{10} \oplus \mathrm{~B}_{10} ; \ldots . \mathrm{K}_{0}=\mathrm{A}_{0} \oplus \mathrm{~B}_{0}$

Then a second level \rightarrow NOR
$E Q=\left(K_{11}+K_{10}+\cdots+K_{1}+K_{0}\right)^{\prime}$

If the numbers are identical, all XOR outputs are 0 , and so, $E Q=1$
If any $A_{i} \neq B_{i} \rightarrow K_{i}=1$, and thus $\rightarrow E Q=0$
13. Solved for example in this P2 plan A tutorial on Adder_1bit:
https://digsys.upc.edu/csd/P03/Adder 1bit A/Adder 1bit A.html

Ai	Bi	Ci	Co	So
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& C o=f(A i, B i, C i)=\prod M(0,1,2,4) \\
& S o=f(A i, B i, C i)=\prod M(0,3,5,6)
\end{aligned}
$$

Problem 3
14.

$$
\begin{aligned}
& \text { ones } Z_{-} L=P \cdot k^{\prime} \\
& \text { zeros } V_{-} L=f(P, k, y, T)=\left(P^{\prime}+k\right) \cdot\left(P^{\prime}+k^{\prime}+y^{\prime}\right) \cdot\left(P^{\prime}+k^{\prime}+Y+T^{\prime}\right)
\end{aligned}
$$

$$
\text { zeros } W_{-} L=P \cdot\left(P^{\prime}+K^{\prime}+y+T\right)
$$

$v_{C C}=v_{\Delta L}+R_{L} i_{D}+v_{O L}$

16.

Expanding the 16 combinations, we can capture the troth table using buffers and signals and a tingle process

$$
\begin{aligned}
& \text { Process (} x_{\text {in }} \text {) } \\
& \text { CASE } x_{\text {in }} \text { is } \\
& \text { When "0000" } \Rightarrow \\
& \text { WHen "out } \Leftarrow=" 10 \theta^{\prime \prime} \text {; }
\end{aligned}
$$

