1.

X3 X2 XA XO	K
\$ \$ \$ \$ \$ \$ \$	1
0001	1
0010	Ø
0011	φ
0100	1
0101	ø
0 1 1 0	x
	1
1 0 0 0	0
1010	×
1011	0
1100	1
1101	0
1110	~
1111	1
	Ø

$$K = M_{0} + M_{4} + M_{4} + M_{7} + M_{11} + M_{14}$$

$$V = \left(M_{0} + M_{1} + M_{4} + M_{7} + M_{11} + M_{14}\right)' = \left(M_{0} \cdot M_{1}' \cdot M_{4}' \cdot M_{5}' \cdot M_{1}' \cdot M_{11}'\right)' \quad Only \quad NAND$$

$$\kappa = \left(x'_{3} \cdot x'_{2} \cdot x'_{1} \cdot x'_{9} + x'_{3} \cdot x'_{2} \cdot x'_{1} \cdot x_{9} + x'_{3} \cdot x'_{2} \cdot x'_{1} \cdot x'_{9} + x'_{3} \cdot x'_{2} \cdot x'_{1} \cdot x'_{9} + x'_{3} \cdot x'_{2} \cdot x'_{1} \cdot x'_{9} + x'_{3} \cdot x'_{1} \cdot x'_{9} + x'_{3} \cdot x'_{1} \cdot x'_{9} + x'_{3} \cdot x'_{1} \cdot x'_{9} + x'_{1} \cdot x'_{1} \cdot x'_{9} + x'_{1} \cdot x'_{1} \cdot x'_{1} \cdot x'_{1} + x'_{1} \cdot x'_{1} \cdot x'_{1} + x'_{1} + x'_{1}$$

3.

 Min_Pulse minimum value for simulations or laboratory experimentation cannot be lower than t_P. If $Min_Pulse < t_P$ digital outputs are never reaching stable digital values V_{OH} and V_{OL}.

4.

Problem 2

6.
When
$$N = \emptyset'$$
 radix-2 humbers highest number is
 $0 \leq A, B \leq 2^{12}-1$ fogs $\frac{4095}{1200}$
 $0 \leq [Cout, R] \leq 2^{13}-2$ 8190 $Cout \leq 1$ (OP
 $N = 40941$
 $N = 1000$ $N \leq 1000$ $N \leq 1000$
 $R = 40941$
 $N = 1000$ $N \leq 1000$ $Cout \leq 1000$ $N = 1000$

7. Use the calculator to calculate radix 2 numbers. Data size is 12 bit. Apply the 2C convention for integers.

 $2^{12} \cdot 2^{12} \cdot 2^{1} \cdot 2^{1} = 2^{26} = 67108869$ combinations automating the test bouch for generating all test rectars, it will take: runtime = 2^{26} . Min_Polse = 7.055

9. Plan C2 allows top-down architecture organisation using simpler components. In a second phase, circuits can be optimised reducing the number of components and multiplexers.

10. Solved for 8-bits at P4: https://digsys.upc.edu/csd/P04/P4.html

11. Solved at this P3 tutorial: <u>https://digsys.upc.edu/csd/P03/Comp_4bitC2/Comp_4bit.html</u>

12. EQ is a bitwise XOR operation followed by a 12-input NOR gate.

First level of gates: $K_{11} = A_{11} \oplus B_{11}$; $K_{10} = A_{10} \oplus B_{10}$; $K_0 = A_0 \oplus B_0$

Then a second level \rightarrow NOR EQ = (K₁₁ + K₁₀ + ... + K₁ + K₀)'

If the numbers are identical, all XOR outputs are 0, and so, EQ = 1 If any $A_i \neq B_i \rightarrow K_i = 1$, and thus $\rightarrow EQ = 0$ 13. Solved for example in this P2 plan A tutorial on Adder_1bit: https://digsys.upc.edu/csd/P03/Adder_1bit_A/Adder_1bit_A.html

> Ai Bi Ci Co So

Problem 3

14.

 $Co = f(Ai, Bi, Ci) = \prod M(0, 1, 2, 4)$ $So = f(Ai, Bi, Ci) = \prod M(0, 3, 5, 6)$

15.

ones $Z_{-L} = P \cdot k'$ 2evos $V_{-L} = \int (P, k, y, T) = (P' + k) \cdot (P' + k' + y') \cdot (P' + k' + y + T')$ 2evos $W_{-L} = P \cdot (P' + k + y + T)$

16.

Expanding the 16 combinations, we can capture the truth table using buffers and signals and a single process

