UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (CSD). Grades will be available online by November 14. Questions about the exam at office time.

Problem 1

1. Solve the function K in Fig. 1 using only 2-input NAND.

$$
K=f\left(X_{3}, X_{2}, X_{1}, X_{0}\right)=\sum m(0,1,4,7,11,14)+\sum d(6,9,13)
$$

Fig. 1. Truth table of Circuit_K. ('d' are don't care terms).
2. Circuit_K invented in 1 will be implemented using a classic technology HCT (High Speed CMOS with TTL outputs) with the characteristics shown in Fig. 2. Deduce and explain the maximum speed of computing and estimate the total power consumption at such frequency.
3. What is the minimum value of Min_Pulse if we intent to run gate-level simulations?

Symbol	Parameter	Test Conditions$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit	Power Dissipation Capacitance per Gate		Typ	Unit				
			Min	Max									
$\mathrm{V}_{\text {IH }}$	High-level Input Voltage		2.0		V	C_{L}		12	pF				
$V_{\text {IL }}$	Low-level Input Voltage			0.8	V	Symbol	Param	eter	Typ	Unit			
	High-level Output	$\mathrm{IOH}=-20 \mu \mathrm{~A}$	4.4		V	$t \mathrm{p}$	Propaga		12	ns			
H	Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	3.84			tpg	Delay		12	ns			
Vol	Low-level Output Voltage	$\mathrm{loL}=20 \mu \mathrm{~A}$		0.1	V	$=P_{S}+P_{d y n}=I_{C C Q} \cdot V_{C C}+V_{C C}^{2} \cdot C_{L} \cdot f$							
		$\mathrm{loL}=4.0 \mathrm{~mA}$		0.33									
Icc	Supply Current	$\mathrm{V}_{1}=\mathrm{GND}$ or V_{Cc}		20	$\mu \mathrm{A}$								

Fig. 2. Technology characteristics of HCT logic gates (adapted from 74HCTOO datasheet).
4. Invent Circuit_K using the method of multiplexers with a MUX_8. Solve the MUX_8 expanding only MUX_2 and logic if necessary. How many VHDL files will this project contain?
5. Firstly, invent Circuit_K using the method of decoders. Secondly, solve your decoder expanding Dec_2_4 and logic if necessary.

Problem 2

6. The truth table in Fig. 3 represents a Selectable_Add_Subt_Comp_12bit arithmetic circuit for operating with both integer $(\mathbf{N}=1)$ and radix-2 $(\mathbf{N}=0)$ numbers. Draw its symbol. Find the range of input and output data.

\mathbf{N}	$\mathbf{O P}$	\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {out }}$	\mathbf{R}	$\mathbf{O V}$	\mathbf{Z}	$\mathbf{G T}$	$\mathbf{E Q}$	$\mathbf{L T}$
0	x	36	157	0	193	x	0	0	0	1
0	x	3571	3571	1	3046	x	0	0	1	0
1	0	$(+2030)$	(-1562)	x	$(+468)$	0	0	1	0	0
1	1	(-2030)	(-2030)	x	0	0	1	0	1	0
1	0	(-2030)	(-2030)	x	x	1	0	0	1	0
1	1	$(+1562)$	(-2030)	x	x	1	0	1	0	0
1	0	(-2030)	$(+1562)$	x	(-468)	0	0	0	0	1

Fig. 3. Truth table of the arithmetic circuit Selectable_Add_Subt_Comp_12bit
7. Convert the signed and unsigned numbers in Fig. 3 into binary.
8. Draw an example of timing diagram (use the Fig. 4 template). Supposing Min_Pulse $=105$ ns calculate how long does it take to test all the truth table of Selectable_Add_Subt_Comp_12bit.
9. Design the Selectable_Add_Subt_Comp_12bit circuit using components.
10. Propose an internal circuit for the Int_Add_Subt_12bit using components.
11. Design a Comp_4bit using Comp_1bit.
12. Design the output EQ using $X O R$ gates.
13. Design an Adder_1bit using maxterms.

Fig. 4. Waveform template for representing the timing diagram in question 8.

Problem 3

14. Draw the symbol of the circuit represented by the truth table in Fig. 5 and calculate the limiting resistors to drive active-low LEDs ($\mathrm{V}_{\mathrm{AKQ}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=3.5 \mathrm{~mA}$) connected at the outputs supposing the electrical characteristics in Fig. 2.

\mathbf{P}	\mathbf{K}	\mathbf{Y}	\mathbf{T}	$\mathbf{V} \mathbf{L}$	$\mathbf{W} \mathbf{L}$	$\mathbf{Z} \mathbf{L}$
0	X	X	\mathbf{X}	1	0	0
1	0	X	X	0	X	1
1	1	1	X	0	1	0
1	1	0	1	0	1	0
1	1	0	0	1	0	0

Fig. 5. Truth table of a combinational circuit named Circuit_1.
15. Write the Circuit_1 equations using PoS or SoP and draw the logic circuit.
16. Plan Circuit_1 drawing a flowchart or schematic using plan B. Translate the main details to VHDL.

