UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (CSD). Grades will be available online by April 26th. Questions about the exam at office time.

Midterm exam.

April 19, 2022

Problem 1.

1. Draw the symbol and an example of timing diagram for the combinational circuit *Circuit_1* with the truth table represented in Fig. 1. Use a *Min_Pulse* time constant of 15.24 µs and calculate how long it takes to run a VHDL testbench simulation to verify all the circuit. Indicate a possible application of this digital circuit.

B_1	\boldsymbol{B}_0	A_1	A_0	R ₃	R ₂	R_1	R_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

Fig. 1 Truth table of a combinational circuit named Circuit_1.

- **2.** Express $R_2 = g(B_1, B_0, A_1, A_0)$ as a product of maxterms and $R_1 = f(B_1, B_0, A_1, A_0)$ as a sum of minterms and draw the equivalent circuits.
- **3.** Simplify *R*⁰ using Boole's algebra and draw the logic circuit.
- **4.** Implement the output R_3 using only 2-input NOR logic gates and draw the circuit.
- 5. The circuit invented in the previous sections 2, 3, and 4 will be implemented using a classic technology ALS-TTL (Advanced Low Power Schottky) with the characteristics shown in Fig. 2. Deduce and explain the maximum speed of computing.
- 6. The circuit invented in the previous sections 2, 3, and 4, will be implemented using a classic technology ALS with the characteristics shown in Fig. 2. Deduce and explain the power consumption when powered at 5 V. Assume that the current consumption of a single logic gate is $I_{CC} = (I_{CCH} + I_{CCL})/2$.
- 7. Draw the schematic and calculate the limiting resistors to drive LEDs (V_{AKQ} = 2.1 V, I_{DQ} = 9 mA) active-high connected at the outputs.
- 8. Implement the circuit using plan C2 based on the method of decoders (MoD) and explain how many VHDL files the project contains.
- **9.** Implement the circuit for output R_1 using plan C2 based on the method of multiplexers (MoM) and a MUX_2. Explain how many VHDL files the project contains.
- **10.** Invent and plan the circuit for the output R_0 using plan B (behavioural).

DADAMETED	SN7	LINUT		
PARAMETER	MIN	TYP	MAX	UNIT
VIK			-1.2	V
Voh	V _{CC} -2			V
Vei		0.25	0.4	V
*OL		0.35	0.5	v
lj –			0.1	mA
Чн			20	μΑ
Ι _{ΙL}			-0.1	mA
IO [#]	-30		-112	mA
ICCH		0.65	1.1	mA
ICCL		2.9	4.2	mA

	-			SN74ALS04B			UNIT	
				MIN NOM MAX				
Vcc	Supply voltage			4.5	5 5	5.5	V	
VIH	High-level inp	High-level input voltage			2		V	
	Low-level input voltage					0.8	V	
VIL								
ЮН	High-level output current					-0.4	mA	
IOL	Low-level output current					8	mA	
TA	Operating free-air temperature			0)	70	°C	
					1			
		MIN	Ν	IAX				
	^t PLH	3		11				
	^t PHL	2		8	ns			

Fig. 2 Technology characteristic for the logic family ALS-TTI

(5p)

Problem 2.

- Draw the symbol and the hierarchical internal schematics (plan C2) of a 7-bit two's complement (2C) adder/subtractor (*Int_Add_Subt_7bit*) for integer numbers. Name all the VHDL source files and explain their function. (1p)
- 2. Determine the range of the operants A, B and the result R. Explain how the overflow (OV) flag works and how its logic circuit and truth table can be infered.
- **3.** Perform the following operations in binary using the two's complement (2C) **7-bit** adder/subtractor from previous section 1). Check the result and deduce the **Z** (zero) and **OV** flags. (1p)

a)	(+41)10	+	(1001010) _{2C}
b)	(0110110) _{2C}	-	(-55)10
c)	(+18)10	+	(1101110) _{2C}
d)	(-29)10	-	(0110110) _{2C}

4. Represent the previous operations in a timing diagram and translate it (only the stimulus section) to a VHDL test bench process using a constant *Min_Pulse* = 10.5 μs. Furthermore, calculate how long it takes to run a testbench for simulating not only the four previous operations, but all the circuit's truth table.

(0.5p)

(0.5p)

 Determine the maximum speed of operation of the 7-bit 2C adder/subtractor designed in section 1) if synthesised in an Altera MAX7128S CPLD device. The propagation delay of a logic gate in this technology is 2 ns. Justify your calculations.

(1p)

6. Deduce the logic function and the corresponding circuit to add the new feature of equality (EQ) detection. This is a flag or indicator that goes high when the operands A = B.

(0.5p)

Using the *Int_Add_Subt_7bit* and other circuits, invent a 7-bit arithmetic and logic unit (ALU) capable of performing the following operations: (0.5p)

S(10)	
0	A + B
1	А – В
2	A nand B
3	A xor B