
(4)

$$
\begin{aligned}
v & =C_{4}+C_{3} C_{2}+C_{3} C_{1} \\
& =\left(C_{2}+1\right.
\end{aligned}
$$

1. Using NOR
2. NOR 3 -input \rightarrow with NOR 2-inputs

$$
\begin{aligned}
& N M H=V_{0 \text { main }}-V_{i_{\text {Main }}}=4.58 \mathrm{~V} \\
& N M L=V_{i_{L \text { max }}}-V_{\text {OL max }}=1.84 \mathrm{~V}
\end{aligned}
$$

(6)

(7) To complete the truth table simulation:

$$
D^{2.7 n s=t_{p}}
$$

4 levels of gates

$$
t_{p_{\text {cinvit }}}=4 \cdot t_{p_{\text {gate }}}=10.8 \mathrm{~ns}
$$

Thus, if Min_Pulse $=t_{\text {Pcircuit }}$ minimum en simulation time

$$
t_{\text {run }} \geqslant 2^{5} \cdot t_{p_{\text {circuit }}}=346 \mathrm{~ns}
$$

Poblaw 2

Problan 3
(2)
(1)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Cho }=f\left(F_{0}, A, 8\right)=\sum m(0,4,5,6) \\
C_{1} 1 \\
=f\left(F_{0}, A, B\right)=\sum m(1,2,4,7)
\end{array}\right. \\
& \text { gates (Buffor-NoT-AND-OR) } \\
& \text { Mox_2. Whd } \\
& \text { Prog.gate. Whd }
\end{aligned}
$$

(3) Assuming Cirwit cho and

Circuit ch1 and mex. 2
of 3 levels of gates

$$
\begin{aligned}
& \Rightarrow 2.7 \mathrm{~ns} \\
& t_{p}=6 \cdot t_{p_{\text {gat }}}=16.2 \mathrm{~ns} \\
& f_{\text {mare }}=61.7 \mathrm{MHz}
\end{aligned}
$$

If $P=f(F, A, B)$ is solved
using 3 levels of gates

$$
\begin{gathered}
t_{p}=3 \cdot t_{P_{\text {ghte }}}=8.1 \mathrm{~ns} \\
f_{\text {max }}=123.5 \mathrm{mHz} \\
\text { (tasta }
\end{gathered}
$$

(faster than using plan C2)

Problem 4
(1)

$$
2^{25} \equiv 32 M_{\text {combinations }}
$$

range 12 bit, integer, $2 C$
$-2^{11} \leqslant A, B, R \leqslant+2^{11}-1$
$-2048 \leqslant A, B, R \leqslant+2047$
(4)

Int_ Aeb_ subt 12 bit. uhd Addar. Ibit. and
(2)

$$
\begin{aligned}
& O P=\Phi^{\prime} \quad R=A+B \quad(-2001)+(+2021)=20 \\
& s={ }^{\circ} \sigma^{\prime} \\
& z={ }^{\circ} \text { " } \\
& \text { OV }=\text { ' } \varnothing \text { ' }
\end{aligned}
$$

> [00000010100
> $O P={ }^{\prime} 1^{\prime} \quad R=A-B \quad(-2001)-(+2021) \Rightarrow O V=1$
$O P=i^{\prime} \quad R=A-B$

$$
\begin{aligned}
& \text { b }+64+32+16+12=+124 \\
& s=\varnothing \\
& O V=\varnothing \quad z=\varnothing
\end{aligned}
$$

$$
\begin{aligned}
& O P=\varnothing^{\prime}
\end{aligned}
$$

(5)

(6) $-D^{<t p}=2.7 \mathrm{~ns}$

If iderar $12 \mathrm{~b} i \mathrm{t} \rightarrow$ $12 *$ Ader-1bit (ripple carry)

$$
\begin{aligned}
& t_{p}=(1+12 \times 3+1) t_{P_{\text {Pate }}} \\
& t_{p}=38 . t
\end{aligned}
$$

$$
\begin{aligned}
& t_{p}=38 \cdot t_{p_{1, \text { gate }}}=102.6 \mathrm{~ns} \\
&
\end{aligned}
$$

(7) 9.75 Moperations $/ \mathrm{s}$ matelsima gate-level simulation

$$
M_{\text {in_ }} P_{i v} l_{d e}=102.6 \mathrm{~ns}
$$

Simulation runtime to solve all the thith table

$$
\begin{gathered}
\text { runtime }=2^{25} * M_{\text {in }} \text { - Pol } l_{\text {de }} \\
=344 \mathrm{~s}
\end{gathered}
$$

$$
=3.44 \mathrm{~s}
$$

