Exam_1 solutions (2021Q1)

Problem 1

a)

\[V_i = V_c = V_{CC} = 5V \]

b)

35 logic gates \(I_{CC} = 0.025mA \)

\[P_0 = (35 \times 0.025mA) \times 5V = 92.5 \mu W \]

e) Gate-level simulation

9 inputs
2^9 = 512 combinations
If Min.Path = 13.5 ns
Complete test
running time = 6.32 μs

d)

5 levels of gates
\(t_p = 135 \) ns
74 million operations per second
Circuit area

Problem 2

\[T = f(C_D, D_0, A, B) = T M(1, 3, 6, 8, 10, 14) \]

a)

This is a plan B that writes all the truth table

<table>
<thead>
<tr>
<th>D</th>
<th>C_D</th>
<th>A</th>
<th>B</th>
<th>X_0</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) NoD

\[T = f(C_D, D_0, 0, B) = \sum m(0, 2, 4, 5, 7, 9, 11, 12, 13, 15) \]

This is another plan as a flowchart and subtracting tables

<table>
<thead>
<tr>
<th>D_0</th>
<th>A</th>
<th>B</th>
<th>C_D</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decide the 10-input OR (all the elements in T)

Circuit T
\(T = f(D, D_0, A, B) = \overline{T Y M(1, 3, 6, 8, 10, 14)} \)

c) MoM using a MUX-8

write the truth table and subdivide it into 8 sections

Circuit-T

\[\begin{array}{cccc|c}
D & D_0 & A & B & T \\
\hline
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\end{array} \]
Prob 2

\[T = f(D_1, D_0, A, B) = TM(1, 3, 6, 8, 10, 14) \]

d) MUX-16 using plan C2

e) Circuit T

All the project:

- 3 VHDL files
- 2 VHDL files
- testbench for simulation

Hierarchical architecture plan C2

Problem 3

a) Circuit's equation

\[R = g(A, B, C) \]

\[S = g(A, B, C) \]

b) Simplify

\[(A' + C) = A + C \]
\[(B + C) = B + C' \]
\[[(B + C') + A' + BC] + (A + C)(A + C') \]
\[(BC + A' + BC')C \]
\[B(C + C') + A' + C \]
\[R = BC + A'C \]

\[\Rightarrow \text{Total simulation time} = 15 \times \text{Min. _ Pulse} = 38.25\mu s \]

c) \[R = BC + A'C = ABC + A'BC + A'BC + A'BC' \]

Truth table: \[R = \Sigma m(1, 3, 7) \]
Problem 4

![ALU_4bit](image)

<table>
<thead>
<tr>
<th>OP</th>
<th>A</th>
<th>B</th>
<th>R</th>
<th>O</th>
<th>V</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 00</td>
<td>(5)</td>
<td>(-6)</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>X</td>
</tr>
<tr>
<td>- 01</td>
<td>(5)</td>
<td>(-6)</td>
<td>1001</td>
<td>0000</td>
<td>0000</td>
<td>X</td>
</tr>
<tr>
<td>AND</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>X</td>
</tr>
<tr>
<td>XOR</td>
<td>1111</td>
<td>1111</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>X</td>
</tr>
</tbody>
</table>

2C integers for arithmetic:

\[A = \overline{0101} \]
\[B = \overline{1010} \]
\[A = \overline{1111} \]
\[B = \overline{1001} \]
\[A = \overline{0000} \]
\[B = \overline{1000} \]

\[\overline{0101} \] Out of range
\[(+5) + 2(\overline{-6}) \]
\[(+5) + 2(\overline{-6}) \]
\[\overline{0101} \] Overflow flag

Truth table:

2^3 * 2^3 = 1024 combinations

Data range from \(-8 \leq A, B, R \leq 7\)

Z → Zero flag (true when \(R = 0000\) for arithmetic and logic operations)

S → Sign bit for arithmetic

S = 1' when negative

OV → Overflow flag

OV = 1 when out of range

\[(+5) \]
\[(+5) + 2\overline{(-6)} \]
b) ALU_4bit architecture example

Can be combined in a single Int. Add. Sub. 4bit using:
\[
\begin{align*}
A + B & = A + 2C(B) \\
A + (\neg B) & = A + 2C(\neg B)
\end{align*}
\]

Combining Int. Add. Sub. 4bit

\[
z = (x+y)(x'+y')
\]

\[
z = ((x+y)(x'+y'))'
\]

Only 3 NOR of 2 inputs