
Software Development Reference Manual

Nios Embedded Processor

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000 Document Version: 2.2
http://www.altera.com Document Date: July 2002

http://www.altera.com

ii Altera Corporation

Copyright Nios Custom Instructions Tutorial

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor
products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

MNL-NIOSPROG-2.2

Altera Corporation
About this Manual
This document provides information for programmers developing
software for the Nios® embedded soft core processor. Primary focus is
given to code written in the C programming language; however, several
sections discuss the use of assembly code as well.

The terms Nios processor or Nios embedded processor are used when
referring to the Altera® soft core microprocessor in a general or abstract
context.

The term Nios CPU is used when referring to the specific block of logic, in
whole or part, that implements the Nios processor architecture.

Table 1 shows the reference manual revision history.

How to Find
Information

■ Adobe Acrobat’s Find feature lets you to search the contents of a PDF
file. Click the binoculars toolbar icon to open the Find dialog box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

Table 1. Revision History

Date Description

July 2002 Changes to nr_debug_dump_trace, nr_debug_isr_halt,
nr_debug_isr_continue, and nios-elf-gdb. Updated PDF - version
2.2

April 2002 Updated PDF - version 2.1

January 2002 Minor amendments. Added DMA and Debug core routines,
nios-elf-gprof and tracelink utilities.

March 2001 Nios Embedded Processor Software Development Reference
Manual - printed
 iii

About this Manual Nios Software Development Reference Manual
How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to
http://www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Note
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Technical support (800) 800-EPLD (3753)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
ftp.altera.com
ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com
http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/

Nios Software Development Reference Manual About this Manual
Typographic
Conventions

The Nios Embedded Processor Software Development Reference Manual
uses the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \QuartusII directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of Quartus II Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, such as resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\quartusII\qdesigns\tutorial\chiptrip.gdf. Also, sections
of an actual file, such as a Report File, references to parts of files (such as the AHDL
keyword SUBDESIGN), as well as logic function names (such as TRI) are shown in
Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

Contents
About this Manual .. iii
How to Find Information .. iii
How to Contact Altera .. iv
Typographic Conventions ..v

Overview ..1
Project Considerations ...1

Development Flow ...2
GERMS Monitor ...8

Monitor Commands ..9
GERMS Boot Process for the Default 32-Bit Nios Design ..10
Booting From Flash Memory ...11

SDK Tree Overview ...12
The Include (“inc”) Directory ...12
The Library (“lib”) Directory ..16

Nios Program Structure ..19
Nios Library Routines ...19

C Runtime Support ..20
System-Level Services ...21

High-Level C Support ...25

Routines ...27
Nios Peripheral Routines ..27
Debug Core ...29

Debug Core Register Access ...30
Debug Core Trace Data ...30
Debug Core Interrupt ..30
Debug Core Software Routines and Macros ..31

DMA ..34
DMA Software Data Structure ...34
DMA Software Routines ...35

PIO ..39
PIO Software Data Structure ..39
PIO Software Routine: nr_pio_showhex ..40

SPI ...41
SPI Software Data Structure ...41
SPI Software Routines ...42

Timer ..43
Altera Corporation vii

Contents Nios Software Development Reference Manual
Timer Software Data Structure ..43
Timer Software Routine: nr_timer_milliseconds ..44

UART ...45
UART Software Data Structure ..45
UART Software Routines ..45

Utilities ...51
Nios Software Development Utilities ...51
hexout2flash ..52

Usage ...52
Options ..52
Example ...52

nios_bash ...53
Usage ...53

nios-build ..54
Usage ...54
Options ..55
Example ...55

nios-convert ..56
Usage ...56
Options ..56
Example ...56

nios_csh ...57
Usage ...57
Example ...57

nios-elf-as ..58
Usage ...58
Options ..58

nios-elf-gcc ..60
Usage ...60
Options ..60

nios-elf-gdb ...64
Usage ...64
Options ..64

nios-elf-gprof ..66
Usage ...66
Options ..66
Example ...67
Advanced Usage ..69

nios-elf-ld ..70
Usage ...70
Options ..70

nios-elf-nm ..75
Usage ...75
Options ..75
Example ...76
viii Altera Corporation

Nios Software Development Reference Manual Contents
nios-elf-objcopy ..77
Usage ...77
Options ..77

nios-elf-objdump ..79
Usage ...79
Options ..79
Example ...81

nios-elf-size ...82
Usage ...82
Options ..82

nios-run ...83
Usage ...83
Options ..83
Example ...83

srec2flash ...84
Usage ...84
Example ...84

tracelink ...86
Usage ...86
Example ...86

Appendix ..89
Appendix A: GERMS Monitor Usage ...89

Hardware Considerations (32-Bit Nios CPU only) ...91
Appendix B: Assembly Language Macros ...93

Index ..95
Altera Corporation ix

Contents Nios Software Development Reference Manual
x Altera Corporation

Altera Corporation

1

Overview

O

verview
The Nios embedded processor is a soft core CPU optimized for
programmable logic and system-on-a-programmable-chip (SOPC)
designs. SOPC designs are created using the MegaWizard® Plug-In
Manager included in the Quartus® II development software. When the
SOPC Builder generates a design, several results occur:

1. The system memory map is checked for consistency. Peripheral
addresses and interrupt priorities are verified to be unique, and fall
within the range of valid entries for the CPU. If not, appropriate
errors are reported and corrections must be made before continuing.

2. A custom software development kit (SDK) is generated for the new
Nios system. The SDK consists of a compiled library of software
routines for the SOPC design, a Makefile for rebuilding the library,
and C header files containing structures for each peripheral.

3. An HDL that describes the custom SOPC Module is generated. This
HDL is (optionally) synthesized into a single netlist, which can then
be integrated as a component in a larger system.

This document covers the SDK generated in step 2 above. All directories
and files mentioned are assumed to be part of the SDK unless otherwise
specified.

Project
Considerations

Many design scenarios are possible in Nios processor-based systems.
Before beginning development, it is helpful to make some decisions based
on application requirements. Consider the following issues before starting
the SOPC design:

■ Memory Model
Application code can reside in on-chip RAM or ROM, in external
memory devices, or both. The amount of available on-chip memory
depends on the Altera programmable logic device (PLD). When
targeting a device with a small amount of on-chip memory (that is,
1 to 20 Kbyte), assembly code may require hand optimization to
maintain a small memory footprint.

Off-chip devices may be added to increase the addressable memory
space, up to a maximum of 4 Gbytes. Consider memory access time
and board layout.
 1

Overview Nios Software Development Reference Manual
■ CPU Core Size
The Nios CPU can be configured with a variety of options that affect
the amount of logic and memory resources required to implement the
SOPC module, including the CPU, peripherals and bus logic. These
options allow the designer to make swaps between CPU size (that is,
cost) and performance.

The Nios CPU allows 32-bit and 16-bit configurations. The 16-bit CPU
consumes fewer logic elements (LEs, a unit of logic resources) and
executes faster for software that does not require 32-bit operations.
Regardless of data path width, the 32-bit Nios CPU can restrict the
width of the address bus to conserve LEs. For example, if 4 MByte of
address space is required, the address bus can be restricted to 22 bits
wide.

■ Software Execution Speed and Hardware Acceleration
All options affecting the Nios CPU’s configuration affect the CPU’s
performance in some respect. Many options offer a dramatic
improvement in code execution time for a moderate trade-off in the
CPU core size. Consider these cases:

– Software operating on 32-bit data executes more efficiently on
the 32-bit Nios CPU.

– Instructions and data can usually be fetched from on-chip
memory with less latency than off-chip memory.

– The 32-bit Nios CPU offers two hardware-accelerated multiply
instructions, which achieve up to ten times the performance of a
software-only implementation.

– Custom instructions can be added to the Nios instruction set.
Custom instructions replace a complex sequence of standard
instructions with a fast hardware implementation. Iterative,
arithmetic algorithms can achieve greater performance by
implementing the inner loop in hardware.

Development Flow

The following outline describes a typical development flow used when
creating a Nios processor-based design from scratch. It is assumed initial
development is accomplished using the development board and software
tools included in the Nios development kit.

Developing applications using the Nios embedded processor is slightly
different than that of traditional processors, since the designer can
configure the processor architecture and specify the peripheral content.
That is, a designer can build a microcontroller according to system design
requirements, as opposed to selecting a pre-built microcontroller with a
fixed set of peripherals, on-chip memory, and external interfaces.
2 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
The Nios development board included in the kit comes with a 32-bit
reference design (processor, on-chip memory with monitor, and
peripherals), and application code pre-loaded in on-board flash memory.
This reference design helps you quickly familiarize yourself with the
development tools prior to starting your custom design (see the Nios
Tutorial). If possible, begin your software design using the Nios
development board as your target hardware platform.

Step 1: Define the Processor

Based on your system needs, decide the following:

CPU data path

Does your application require a 32-bit or 16-bit data path? If a 32-bit data
path is not needed, a 16-bit data path generates a smaller, faster CPU core.

Register File Size

Specify the size of the Nios CPU’s internal register file to suit the system
requirements. Valid configurations are 128, 256, or 512 registers. The
width of each register is the width of the CPU data path. A larger register
file consumes more on-chip memory resources.

The Nios processor implements a windowed register file. 32 registers are
visible to the CPU at any given time. A window pointer into the register
file makes the register file behave like a stack. This improves performance
of subroutine calls by eliminating the need to load and store processor
context and subroutine variables to slow external memory devices.

Data Path LEs Used Address Range

16-bits 900 64 K

32-bits 1250 4 GB
Altera Corporation 3

Overview Nios Software Development Reference Manual
Multiplier

If your code performs few multiplication operations, does not contain
time critical multiplication, or you want to make the CPU core as small as
possible, use the software math libraries included with the C compiler. On
the other hand, if your code performs numerous multiplication operations
or must be optimized for speed, choose one of the dedicated hardware
multipliers (MSTEP or MUL).

On-Chip Memory

Determine how much on-chip ROM and RAM your system requires. The
Nios processor uses embedded system blocks (ESBs) for on-chip memory.
There are practical limits to the number of ESBs used for on-chip memory
(see the Altera Device Data Book for details on the number of ESBs
available in particular devices). The SOPC Builder imposes a maximum
limit of 20 Kbytes per on-chip memory device.

Off-Chip Memory

Interfaces to off-chip memory are provided for flash memory, SRAM,
SSRAM, and SDRAM. Any user-defined interface may be created to
connect other off-chip memory devices. The GERMS monitor included in
the development kit contains software routines for writing to and erasing
Advanced Micro Devices (AMD) flash devices. See “GERMS Monitor” on
page 8 for details.

Table 1. Multiplication Options

Option Additional
LEs Used

Clock Cycles
16x16>32

Clock Cycles
32x32>32

None (software) 0 80 250

MSTEP +20 18 80

MUL +400 2 16
4 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
Peripherals

Decide the type and number of peripherals to connect to the Nios
processor. A number of peripherals, listed in Table 2, are included with
the Nios development kit. You can also create interfaces to off-chip or
custom on-chip peripherals using either the parallel input/output (PIO)
peripheral or user-defined interface.

Step 2: Build the Processor

Using the Quartus II development software and the MegaWizard Plug-In
Manager, generate a custom processor system based on the choices you
made in Step 1. As you build the processor, you will:

■ Configure the CPU hardware options, including data path width
(32 or 16 bits), multiplier acceleration, and custom instruction usage

■ Add required peripherals and configure peripheral hardware
options

■ Specify the processor boot address
■ Assign peripheral memory addresses and alignment
■ Assign interrupt priorities for peripherals and external interfaces as

needed
■ Specify peripheral setup and hold requirements as needed
■ Assign peripheral and memory wait states as needed
■ Enable dynamic bus-sizing to narrow memory or peripheral

interfaces as needed
■ Specify files containing instruction or data memory to initialize on-

chip ROM and/or RAM

Table 2. Nios Peripherals

Peripheral Name Description

DMA Direct memory access: enables high-speed data transfer

PIO 1- to 32-bit parallel input/output and edge capture

SDRAM Controller Interface to synchronous dynamic random-access
memory (SDRAM)

SPI Serial peripheral interface, 3-wire, master/slave

Timer 32-bit general-purpose timer

UART Universal asynchronous receiver/transmitter

User-defined interface Custom interface to on-chip and off-chip peripherals

Off-chip shared bus Shared interface to off-chip peripherals and memory
Altera Corporation 5

Overview Nios Software Development Reference Manual
Once the Nios system is created, it may optionally be combined with other
user-defined logic. The top-level design must be synthesized and fit into
an Altera device using the Quartus II software. Quartus II outputs a
device configuration file of type sof or hexout, which must be
downloaded to the development board. You can use the Quartus II
software and the ByteBlaster MVTM download cable to configure the
Altera device directly from a host PC. Another option is to burn the device
configuration file into on-board flash, and then reset the board.

The GERMS monitor program included in the Nios development kit
allows you to run executable code, read from and write to memory,
download blocks of code (or data) to memory, and erase flash. See
“GERMS Monitor” on page 8 for details. By assigning the GERMS monitor
to the processor boot address (typically on-chip ROM), you can
immediately begin code development, download, and debug.

f See the Nios Tutorial for instructions on creating a Nios processor-based
SOPC design.

Step 3: Save the Processor Configuration to FLASH

The Altera PLD that implements the Nios CPU and other logic is volatile
and therefore must be configured each time the board is reset by pushing
the RESET button (SW2) or by cycling power. This configuration data (the
hardware design) is stored in on-board flash. The development board
contains logic that supports a dual configuration scheme as follows:

By default, the APEX™ device is configured from a “User” section of flash
memory (address range 0x180000–0x1BFFFF). If the APEX device fails
to configure due to corrupt or empty User section, it is automatically
configured from the “Factory” section of flash memory (address range
0x1C0000–0x1FFFFF). When jumper JP2 is shorted and the RESET
button is pressed, the APEX device is forced to configure from the Factory
section of flash memory.

During development, it is recommended you always store a new design
to the User section of flash memory. This way, if a hardware bug occurs
you can reconfigure the APEX device with the known good reference
design stored in the Factory section of flash memory. Altera loads the
factory section of flash memory with a 32-bit Nios system design. See
“hexout2flash” on page 52 for details on downloading device
configuration files to flash memory.

Step 4:Create and Compile the Application Software

Using a text editor (xemacs and vi editors are included with Cygwin),
write the application source code in C/C++ or assembly (.c or .s).
6 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
Compile your source code into executable code using the nios-build
utility or a make file. The resultant binary code is stored in S-record format
(.srec).

For small- to medium-sized software projects, use nios-build to generate
executable code. See “nios-build” on page 54 for details.

For large projects, use hand-crafted make files. For details on using make,
see the online GNU documentation by choosing Programs > Cygwin >
Cygwin Documentation (Windows Start Menu). In the help window that
appears, click Using make.

Step 5: Download the Executable Code to the Development Board

Use nios-run to download and run the application on the development
board. See “nios-run” on page 83 for details.

Step 6: Debug the Code

If you use printf() to debug your code, messages are sent to the STDIO
(such as UART). The nios-run utility acts as a dumb terminal to display
these messages on your development system terminal.

If more sophisticated debugging is called for, rebuild the code with the
compiler debugging option set ON, then use the GNU debugger (GDB) or
other integrated development environment (IDE) to step through the
code, examine memory and register contents, and so on. See “nios-elf-
gdb” on page 64 for details.

Step 7: Transition to Auto-Booting Code

Once the application code is sufficiently debugged, you may wish to store
the executable code on the development board. The Nios CPU then
automatically executes the application upon reset. The options for storing
nonvolatile code on the board are:

Store Code in On-Chip Memory

To store program data in on-chip ROM or RAM, specify a file to initialize
the memory. (See “Step 2: Build the Processor” on page 5.) In this case, you
remove the GERMS monitor completely and replace it with your
application code.
Altera Corporation 7

Overview Nios Software Development Reference Manual
Store Code in Off-Chip Memory

Store the program in flash memory so the GERMS monitor automatically
executes it after initialization. Use srec2flash to convert the executable
code in .srec format to a .flash format that can be easily burned into the
on-board flash. srec2flash also adds a software routine that copies the
executable code from flash memory to SRAM at start time. See
“srec2flash” on page 84 for details.

 or

Remove the GERMS monitor entirely and change the Nios CPU reset
address to point to the program in flash memory. Use srec2flash to add a
routine that copies the executable code from flash memory to SRAM at
start time.

Step 8: Transition Design From Nios Development Board to Target
Hardware

If possible, continue using the GERMS monitor to download code to RAM
on the target hardware. Iteratively compiling and downloading new
software without burning a new ROM or recompiling the hardware
design is quite useful.

GERMS
Monitor

The GERMS monitor is a simple monitor program that provides basic
development facilities for the Nios development board, and can also be
used in an end system. The GERMS monitor is included in the default
design stored in flash memory of the development board. On power-up,
the GERMS monitor is the first code to execute, and it controls the boot
process. Once booted, it provides a way to read from and write to the on-
board SRAM or flash memories.

“GERMS” is a mnemonic for the minimal command set of the monitor
program included in the Nios development kit:

G Go (run a program)
E Erase flash
R Relocate next download
M Memory set and dump
S Send S-records
: Send I-Hex records

f For details on GERMS monitor usage, see “Appendix A: GERMS Monitor
Usage” on page 89.
8 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
Monitor Commands

When the monitor is running, it is always waiting for commands. The user
sends commands as text characters to a “host communication UART”
when building the Nios hardware. Commands consist of a letter followed
by an address, or two addresses separated by a hyphen. The M command
contains an address followed by a colon, followed by data to write.

Commands are executed as they are typed. For example, if you write to
memory, each word is stored as soon as it is entered. GERMS does not
recognize backspace or delete. If you type a mistaken character, press the
Escape key to restart the monitor.

All numbers and addresses entered into the monitor are in hexadecimal.

Table 3. GERMS Monitor Commands

Syntax Example Description

G<base address> G40000 GO—Execute a CALL instruction to the specified
address

E<base address> E180000 Erase flash memory. If the address is within the range
of the “flash” ROM, the sector containing that address
is erased.

R <offset> R1C0000 Relocate command. Specifies the offset for the next
downloaded S-record or I-Hex. When two parameters
are provided, the offset is the <from address>
subtracted from the <to address>. See “Appendix A:
GERMS Monitor Usage” on page 89 for an example.

R<from address>-<to address> R0-180000

M<address> M50000 Display memory starting from the address

M<address>-<address> M40000-40100 Display a range of memory. Press r again to show the
same number of bytes, starting where the last M
command ended.

M<address>:<value> <value>… M50000:1 2 3 4 Write successive 16-bit words to memory until the end
of line.

M<address>-<address>:<value> M50000-50100:AA55 Fill a range of memory with a 16-bit word.

r r Display the next 64 bytes of memory.

S<S-record data> S21840000… Write S-record to next memory location.

:<I-hex record data> :80000004… Write I-hex record to next memory location.

Escape key – Restart the monitor.
Altera Corporation 9

Overview Nios Software Development Reference Manual
GERMS Boot Process for the Default 32-Bit Nios Design

This section describes the boot process used by the GERMS monitor
running on the “Factory” APEX design that ships on the Nios
development board. Custom SOPC designs are not required to use
GERMS, but probably perform many of the same operations to prepare
the system for software execution.

The monitor is located at address zero, 0x0000, in the Nios development
board default configuration.

There are several ways the monitor may come to be executed. When the
Altera PLD is configured with the default Factory design, execution
begins at address zero, which is the monitor. Later, if any unexpected
TRAP or interrupt occurs for which the vector table is not initialized, the
monitor is executed.

When the monitor starts running, it performs the system initialization:

1. Disables interrupts so that interrupt requests from the UART, Timer,
switch PIO, and other peripherals do not interrupt the initialization
process.

2. Sets current window pointer (CWP) to HI_LIMIT to initialize the
register file window.

3. Sets interrupt priority (IPRI) to 63, so that when interrupts are re-
enabled, all interrupt requests are serviced.

4. Initializes the stack pointer by setting %sp to 0x80000
(nasys_stack_top).

It then looks for code to execute out of flash memory:

5. Examines the two bytes at 0x14000C (nasys_flash + 0x04000C).

6. Examines button 0 on the switch PIO (SW4).

7. If the button is not pressed and the two bytes contain “N” and “i”,
the monitor executes a CALL to location 0x140000
(nasys_flash + 0x040000).
10 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
If the code is not executed in step 7 or that code returns, then:

8. Prints an 8-digit version number to STDOUT, of the form
“#vvvvPPPP” followed by a carriage return, where “vvvv” is a
monitor pseudo-version—it is different but not necessarily
consecutive for different builds of the monitor—and PPPP is the
processor version number, as retrieved from processor register
CTL 6.

9. Waits for user commands from STDIN.

Booting From Flash Memory

User software applications can be stored in flash and executed
automatically on system power-up or reset. This is particularly useful
when developing application code targeted for flash memory.

During the boot process, the GERMS monitor checks for the existence of
application software in flash memory (step 5 in “GERMS Boot Process for
the Default 32-Bit Nios Design”). If found, the processor immediately
executes the code. Use the software utility srec2flash to prepare programs
for this style of operation (see “srec2flash” on page 84). srec2flash adds a
piece of code to the beginning of the program that copies the application
code from flash (slow memory) to SRAM (fast memory) and runs from
SRAM.

To return program execution to the GERMS monitor (that is, avoid
running code stored in flash memory):

1. Hold down SW4.

2. Press then release the RESET button (SW2).

3. Release SW4.

f For more details on this process, see the Altera white paper Converting
.srec Files to .flash Files for Nios Embedded Processor Applications at
http://www.altera.com/literature/wp/wp_srec_to_flash.pdf.
Altera Corporation 11

http://www.altera.com/literature/wp/wp_srec_to_flash.pdf.

Overview Nios Software Development Reference Manual
SDK Tree
Overview

The SDK is generated as a subdirectory of your Quartus II (or
MAX+PLUS® II) project. It is given the name of the SOPC Module (the
Nios system) appended with “_sdk”. For example, the 32-bit Factory
reference design (ref_32_system) directory structure is:

.../ref_32_system_cpu_sdk/
 |
 +--- inc/
 |
 +--- lib/
 |
 +--- src/

The Include (“inc”) Directory

[bash] ...inc/: ls -l
total 17
-rw-r--r-- 1 niosuser Administ 12413 Oct 24 15:01 nios.h
-rw-r--r-- 1 niosuser Administ 7088 Oct 24 15:01 nios.s
-rw-r--r-- 1 niosuser Administ 8998 Oct 24 15:01 nios_macros.s
-rw-r--r-- 1 niosuser Administ 688 Oct 24 15:01 pio_lcd16207.h

The SDK include directory, inc, contains several files intended for
inclusion from your application programs. These files define the
peripheral addresses, interrupt priorities, register structures, and other
useful constants and macros. To use these features in a program, include
nios.h in each file if the file is written in C or C++, or nios.s if the file is
written in assembly language.

nios.h (and nios.s)

This file contains register maps for each peripheral in your system.
Additionally, it contains C prototypes for library routines available for
each peripheral.
12 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
For C programs, the register maps are provided as structures. For
example, the Timer peripheral’s structure is:

typedef volatile struct
{
int np_timerstatus; // read only, 2 bits (any write to clear TO)
int np_timercontrol; // write/readable, 4 bits
int np_timerperiodl; // write/readable, 16 bits
int np_timerperiodh; // write/readable, 16 bits
int np_timersnapl; // read only, 16 bits
int np_timersnaph; // read only, 16 bits
} np_timer;

enum
{
np_timerstatus_run_bit = 1, // timer is running
np_timerstatus_to_bit = 0, // timer timed out

np_timercontrol_stop_bit = 3, // stop the timer
np_timercontrol_start_bit = 2, // start the timer
np_timercontrol_cont_bit = 1, // continuous mode
np_timercontrol_ito_bit = 0, // enable time out interrupt

np_timerstatus_run_mask = (1<<1), // timer is running
np_timerstatus_to_mask = (1<<0), // timer timed out

np_timercontrol_stop_mask = (1<<3), // stop the timer
np_timercontrol_start_mask = (1<<2), // start the timer
np_timercontrol_cont_mask = (1<<1), // continuos mode
np_timercontrol_ito_mask = (1<<0) // enable timeout interrupt
};

The prefix np_ stands for “Nios peripheral”.

Each register is included as an integer (int) structure field, so software that
uses the structure can be targeted transparently to both 32-bit and 16-bit
Nios processors.

For registers with sub-fields or control bits, additional constants are defined
to reference those fields by both mask and bit number. (Bit numbers are
useful for the Nios assembly language instructions SKP0 and SKP1.)

nios.h and nios.s also provide addresses for all peripherals, interrupt
numbers, and other useful constants. Following is an excerpt:

#define na_timer1 ((np_timer *) 0x00000440)
#define na_timer1_irq 25
#define na_led_pio ((np_pio *) 0x00000460)
#define na_button_pio ((np_pio *) 0x00000470)
#define na_button_pio_irq 27
#define nasys_printf_uart ((np_uart *) 0x00000400)
#define nasys_printf_uart_irq 26
Altera Corporation 13

Overview Nios Software Development Reference Manual
The name na_timer1 is derived from the peripheral’s name “Timer”.
The prefix na_ stands for “Nios address”. It is defined as a number cast
to the type of “np_timer *”. This allows the symbol “na_timer1” to be
treated as a pointer to a timer structure. Following is an example of code
written to access the Timer:

int status = na_timer1->np_timerstatus; /* get status of timer1 */

Switches

The following switches are defined in the nios.h file:

#define __nios_catch_irqs__ 1
#define __nios_use_constructors__ 1
#define __nios_use_cwpmgr__ 1
#define __nios_use_fast_mul 1
#define __nios_use_small_printf__ 1

__nios_catch_irqs__

When __nios_catch_irqs__ is set to 1, a default interrupt handler is
installed for every interrupt. Changing this setting to 0 saves a small
amount of code space.

__nios_use_constructors__

When __nios_use_constructors__ is set to 1, the Nios library contains
startup code to call any initializing code for statically allocated C++
classes. By default, this is set to 1. Changing this setting to 0 reduces the
compiled software’s code footprint if static initialization of C++ classes is
not needed. This is useful for creating software that requires a small ROM
memory footprint.

__nios_use_cwpmgr__

When __nios_use_cwpmgr__ is set to 1, the Nios library contains code for
handling register window underflows. Changing this setting to 0 reduces
the code footprint of the compiled software. Do this only when the code
does not call to a subroutine depth that exceeds the register file size. See
the Nios 16-Bit Programmer’s Reference Manual or Nios 32-Bit
Programmer’s Reference Manual for details on the CWP register and
managing the windowed register file.
14 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
__nios_use_fast_mul__

This setting is defined in the nios.h file but works in conjunction with the
NIOS_USE_MULTIPLY and NIOS_USE_MSTEP settings in
.../lib/Makefile. For details, see “__nios_use_fast_mul__” on page 17.

__nios_use_small_printf__

The standard printf() routine in the GNU libraries takes about 40 Kbytes
of Nios code. It contains support for the complete ANSI printf()
specification, including floating point numbers. When
__nios_use_small_printf__ is set to 1, a more minimal implementation is
linked into the Nios library, which takes about 1 Kbyte of Nios code. This
“small printf” supports only integers and the formats %c, %s, %d, %x, and
%X. This setting is useful for sending debug messages to STDIO (a UART)
without significantly increasing the executable code size.

nios_macros.s

This file includes various useful assembly language macros. See
“Appendix B: Assembly Language Macros” on page 93 for details.
Altera Corporation 15

Overview Nios Software Development Reference Manual
The Library (“lib”) Directory

[bash] ...lib/: ll
total 262
-rw-r--r-- 1 niosuser Administ 5353 Nov 6 15:02 Makefile
-rw-r--r-- 1 niosuser Administ 6564 Oct 24 15:01 flash_AMD29LV800.c
-rw-r--r-- 1 niosuser Administ 139016 Nov 13 15:59 libnios32.a
-rw-r--r-- 1 niosuser Administ 139706 Nov 13 15:59 libnios32_debug.a
-rw-r--r-- 1 niosuser Administ 711 Oct 24 15:01 nios_copyrange.s
-rw-r--r-- 1 niosuser Administ 3133 Oct 24 15:01 nios_cstubs.s
-rw-r--r-- 1 niosuser Administ 7932 Oct 24 15:01 nios_cwpmanager.s
-rw-r--r-- 1 niosuser Administ 561 Oct 24 15:01 nios_delay.s
-rw-r--r-- 1 niosuser Administ 11111 Oct 24 15:01 nios_emulator.s
-rw-r--r-- 1 niosuser Administ 392 Oct 24 15:01 nios_gdb_standalone.c
-rw-r--r-- 1 niosuser Administ 27310 Oct 24 15:02 nios_gdb_standalone.srec
-rw-r--r-- 1 niosuser Administ 26151 Oct 24 15:01 nios_gdb_stub.c
-rw-r--r-- 1 niosuser Administ 1886 Oct 24 15:01 nios_gdb_stub.h
-rw-r--r-- 1 niosuser Administ 443 Oct 24 15:01 nios_gdb_stub_io.c
-rw-r--r-- 1 niosuser Administ 9815 Oct 24 15:01 nios_gdb_stub_isr.s
-rw-r--r-- 1 niosuser Administ 23245 Oct 24 15:01 nios_germs_monitor.s
-rw-r--r-- 1 niosuser Administ 7740 Oct 24 15:02 nios_germs_monitor.s.o
-rw-r--r-- 1 niosuser Administ 22284 Nov 2 09:44 nios_gprof.c
-rw-r--r-- 1 niosuser Administ 7088 Oct 24 15:01 nios_isrmanager.s
-rw-r--r-- 1 niosuser Administ 720 Oct 24 15:01 nios_jumptostart.s
-rw-r--r-- 1 niosuser Administ 3281 Oct 24 15:01 nios_math1.s
-rw-r--r-- 1 niosuser Administ 960 Oct 24 15:01 nios_printf.c
-rw-r--r-- 1 niosuser Administ 2282 Oct 24 15:01 nios_setjmp.s
-rw-r--r-- 1 niosuser Administ 4260 Oct 24 15:01 nios_setup.s
-rw-r--r-- 1 niosuser Administ 5481 Oct 24 15:01 nios_sprintf.c
-rw-r--r-- 1 niosuser Administ 764 Oct 24 15:01 nios_zerorange.s
drwxr-xr-x 2 niosuser Administ 12288 Nov 13 15:59 obj32/
drwxr-xr-x 2 niosuser Administ 12288 Nov 13 15:59 obj32_debug/
-rw-r--r-- 1 niosuser Administ 5859 Oct 24 15:01 pio_lcd16207.c
-rw-r--r-- 1 niosuser Administ 1218 Oct 24 15:01 pio_showhex.s
-rw-r--r-- 1 niosuser Administ 2392 Oct 24 15:01 timer_milliseconds.s
-rw-r--r-- 1 niosuser Administ 770 Oct 24 15:01 uart_rxchar.s
-rw-r--r-- 1 niosuser Administ 764 Oct 24 15:01 uart_txchar.s
-rw-r--r-- 1 niosuser Administ 450 Oct 24 15:01 uart_txcr.s
-rw-r--r-- 1 niosuser Administ 901 Oct 24 15:01 uart_txhex.s
-rw-r--r-- 1 niosuser Administ 794 Oct 24 15:01 uart_txhex16.s
-rw-r--r-- 1 niosuser Administ 796 Oct 24 15:01 uart_txhex32.s
-rw-r--r-- 1 niosuser Administ 692 Oct 24 15:01 uart_txstring.s
[bash] ...lib/:

The SDK library directory, lib, contains a Makefile, and archive, source,
and object files for libraries usable by your Nios system.

Some source files are in assembly language, and others are in C. The
archive contains assembled (or compiled) versions of routines from each
file, suitable for linking to your program. See “Routines” on page 27 for
details.
16 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
The command line tool nios-build uses the libnios32.a library directory
when building for a 32-bit system, or libnios16.a when building for a Nios
16-bit system.

The Makefile contains instructions for rebuilding the archive file. The
beginning of the Makefile contains several settings to enable or disable
various features of the Nios library. Following is an excerpt from a typical
Nios library Makefile:

#
Nios SDK Generated Makefile
2002.01.24 01:19:30
//d/niosbuild/srctree/Delta/SWDev/bin/nios_reference32.ptf
#
NIOS_USE_MSTEP = 1 # CPU option (shift, test, & add)
NIOS_USE_MULTIPLY = 0 # CPU option (16x16->32)
NIOS_SYSTEM_NAME = nios_system_module

M = 32 # Nios 32

You can change each of these settings to customize the Nios library. After
changing a setting, enter make -s all at the command line to rebuild
the library.

The following sections describe each setting.

__nios_use_fast_mul__

This variable is defined in the nios.h file but works in conjunction with
NIOS_USE_MULTIPLY and NIOS_USE_MSTEP.

If __nios_use_fast_mul__ is set to 0, a standard software multiply routine
which is slow and short, is linked into the Nios library. To instruct the
library to perform integer multiplications with either optional instruction
MUL or MSTEP, set __nios_use_fast_mul__ to 1. When
__nios_use_fast_mul__ is set to 1, and both NIOS_USE_MULTIPLY and
NIOS_USE_MSTEP are set to 0, a hand-optimized integer multiplication
routine, which is faster and larger, is linked into the Nios library. See
Table 4 on page 18 for a comparison of the possible settings

NIOS_USE_MSTEP

If NIOS_USE_MSTEP is set to 1, the Nios library overrides the standard
multiplication routine with a faster one that uses the MSTEP instruction.
This is set to 1 automatically if the MSTEP feature is selected in the SOPC
Builder software. Use this setting in conjunction with
__nios_use_fast_mul__.
Altera Corporation 17

Overview Nios Software Development Reference Manual
NIOS_USE_MULTIPLY

If NIOS_USE_MULTIPLY is set to 1, the Nios library overrides the
standard multiplication routine with a faster one that uses the MUL
instruction, which runs even faster than MSTEP multiplication. This is set
to 1 automatically if the MULTIPLY feature is selected in the SOPC
Builder software. Use this setting in conjunction with
__nios_use_fast_mul__.

Table 4 shows how the above settings work together:

NIOS_SYSTEM_NAME

This is a string with the name of the Nios system.

M

This setting is either 16 or 32, to match the width of the Nios CPU. Also,
nios-build uses this value to set the appropriate compiler and assembler
options when building.

Table 4. Size Versus Speed Multiplication

__nios_use_fast_mul__
Value

NIOS_USE_MSTEP
Value

NIOS_USE_MULTIPLY
Value

Use

0 0 or 1 0 or 1 Slow and short multiplication routine

1 0 0 Fast and large multiplication routine

1 1 0 Routine with MSTEP instructions

1 0 1 Routine with MUL instruction
18 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
Nios Program
Structure

In the typical case of a C program built with nios-build, the memory
layout represented in the resultant S-record file is:

Nios Library
Routines

The SDK for your Nios system includes the pre-built library libnios32.a
(for a 32-bit Nios system) or libnios16.a (for a 16-bit Nios system); either
is referred to here as the Nios library. The routines available vary
depending on the peripherals in the Nios system. This section describes
routines that are always present. Optional peripheral routines are
discussed in “Routines” on page 27.

Table 5. Memory Layout

Address, ascending Contents

nasys_program_mem + 0x00 A preamble consisting of a JUMP instruction to the
symbol “_start” and the four characters “N”, “i”, “o”,
and “s”. This is always at the beginning of the S-
record output file. It comes from the library file
nios_jumptostart.o.

nasys_program_mem + 0x10 The program’s “main()” is in here, as well as all
other routines, in the order shown below. The
command nios-build passes nios_jumptostart.o
to the GNU linker as its first file and the user
program as its second.

(A higher address) A routine labeled “_start”. This comes from the
library file nios_setup.o. It performs some
initialization, then calls “main()”.

(A higher address) Two routines for handling “register window
underflow” and “register window overflow”
required by the Nios embedded processor to
execute arbitrarily deep calling chains. These
come from the nios_cwpmanager.o library file.

(A higher address) Any other Nios library routines the program
references. The linker extracts only the required
routines from the file libnios32.a and includes
them in the final program.

(A higher address) Any read-only data from the program, such as
strings or numeric constants.

(A higher address) Any static variables in the program.
Altera Corporation 19

Overview Nios Software Development Reference Manual
C Runtime Support

Before a compiled program is run, certain initializations must take place.
When nios-build is used to compile and link a program, the first routine
executed is “_start”, which performs this initialization, then calls the
“main()” routine. Furthermore, the standard C libraries rely on several
low-level platform-specific routines.

Table 6 lists the low-level C runtime support provided by the Nios library,
always present in the Nios library:

Note
(1) This routine is faster than the standard routine, uses the MUL or MSTEP instructions (if present), and does not use

a register window level. It uses more code space than the standard routine.

Table 6. C Runtime Support Routines

Routine Source File Description

_start nios_setup.s Performs initialization prior to calling main()

_exit nios_cstubs.s Execute a JMP to nasys_reset_address

_sbrk nios_cstubs.s Increments “RAMLimit” by the requested amount and returns its previous value,
unless the new value is within 256 bytes of the current stack pointer, in which case it
returns 0. This is the low-level routine used by malloc() to allocate more heap space.

isatty nios_cstubs.s Returns “1”, indicating to the C library that there is a tty

_close nios_cstubs.s Returns “0”; not used by Nios software without a file system, but necessary to link

_fstat nios_cstubs.s Returns “0”; not used by Nios software without a file system, but necessary to link

_kill nios_cstubs.s Returns “0”; not used by Nios software without a file system, but necessary to link

_getpid nios_cstubs.s Returns “0”; not used by Nios software without a file system, but necessary to link

_read nios_cstubs.s Calls nr_uart_rxchar() to read a single character from a UART. The “fd” parameter is
treated as the base address of a UART.

_write nios_cstubs.s Calls nr_uart_txchar() to print characters to a UART. The “fd” parameter is treated as
the base address of a UART. This allows the routine fprintf() to print to any UART by
passing a UART address in place of the file handle argument.

__mulsi31 nios_math1.s Overrides the standard signed 32-bit multiplication routine in the GNU C library.

__mulhi31 nios_math1.s Overrides the standard unsigned 32-bit multiplication routine in the GNU C library.
20 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
_start

The first instructions executed by a Nios CPU upon start-up are the
preamble instructions to jump to _start, followed by the actual _start code
instructions. Before compiled software can run, system initialization must
be performed by the _start routine. The initialization steps are:

1. Initialize the stack pointer to “nasys_stack_top”.

2. Zero program storage between “__bss_start” and “_end”.

3. Set an internal variable named “RAMLimit” to “_end” (malloc
claims memory upwards from here).

4. Optionally install the CWP Manager.

5. Optionally call the C++ static constructors.

6. Execute a CALL to the routine “main()”, which normally is the main
entry point of your C routine.

7. If “main()” returns, ignore its return value and execute a TRAP 0.
This usually results in restarting the monitor.

System-Level Services

The system-level service routines discussed in this section are always
present in the Nios library, and are called automatically unless disabled in
the Makefile.

Interrupt Service Routine Handler

The Nios processor allows up to 64 prioritized, vectored interrupts
numbered 0 to 63. The lower the interrupt number, the higher the priority.
Interrupt vectors 0 through 15 are reserved for system services, leaving 48
interrupt vectors for user applications.

f See the Nios 16-Bit Programmer’s Reference Manual or Nios 32-Bit
Programmer’s Reference Manual for details on Nios CPU exception
handling.
Altera Corporation 21

Overview Nios Software Development Reference Manual
nr_installuserisr

This routine installs a user interrupt service routine for a specific interrupt
number. If nr_installuserisr() is used to set up the interrupt vector table,
standard compiled C functions can be specified as interrupt service
routines. This is useful for software designers who are not familiar with
the low-level details of the Nios interrupt vector table. This function is
declared in the include file nios.h.

1 If you manipulate the vector table directly, you must completely
understand the mechanisms of the Nios register window, control
registers, and so on, so that interrupt requests execute and return
properly.

The user interrupt service routine receives the context value as its only
argument when called. The interrupt service routine itself must clear any
interrupt condition for a peripheral it services.

Syntax:
void nr_installuserisr(int trapNumber, void
*nios_isrhandlerproc, int context);

Parameters

Parameter Name Description

trapNumber Interrupt number to be associated with a user interrupt
service routine

nios_isrhandlerproc User-supplied routine with the prototype:
typedef void (*nios_isrhandlerproc)(int

context);

context A value passed to the routine specified by
nios_isrhandlerproc
22 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
nr_installuserisr2

This routine is similar to nr_installuserisr, except when the user interrupt
service routine is called, the interrupt number and the interrupted PC are
passed by the funnel routine to the user interrupt handler, as well as the
context.

Syntax:
void nr_installuserisr2(int trapNumber, void
*nios_isrhandlerproc2, int context);

Parameters

CWP Manager

A detailed understanding of the windowed register file is not required to
write Nios software. The CWP Manager routine handles the details of
manipulating the register file during subroutine calls. This section
describes the CWP Manager since it becomes part of most users’ final
software.

The Nios embedded processor contains 128, 256, or 512 general-purpose
registers. Of these, 32 are visible to the software at any particular moment.
They are named %r0–%r31, and can also be referred to as %g0–%g7
(global), %o0–%o7 (out), %L0–%L7 (local), and %i0–%i7 (in).

The CWP bits of the Nios STATUS register (%ctl0, readable via the RDCTL
instruction) determines which 32 registers are visible. See the Nios 16-Bit
Programmer’s Reference Manual or Nios 32-Bit Programmer’s Reference
Manual for details.

Parameter Name Description

trapNumber Interrupt number to be associated with a user interrupt
service routine

nios_isrhandlerproc2 User-supplied routine with the prototype:
typedef void (*nios_isrhandlerproc2)(int

context, int irq_number, int

interruptee_pc);

context A value passed to the routine specified by
nios_isrhandlerproc

irq_number Interrupt request number (trapNumber)

interruptee_pc Return address from the interrupt
Altera Corporation 23

Overview Nios Software Development Reference Manual
Subroutines execute a SAVE instruction, which decrements the CWP by
one, revealing 16 “new” registers. The “caller’s” %o registers are visible to
the “callee” as %i registers. Eventually, however, there are no more
registers to reveal, and the CWP points to the lowest registers.

When the supply of registers is exhausted and a SAVE is executed, it
induces a software exception that is handled by the CWP Manager’s
underflow handler. This handler saves every register onto the stack, and
repositions the CWP back to the top.

Conversely, subroutines execute a RESTORE instruction when they are
ready to return. If the CWP is already at the top of the register file, a trap
is induced, which is handled by the CWP Manager’s overflow handler.
This handler restores the register contents from memory where they were
saved earlier by the corresponding underflow condition.

nr_installcwpmanager

This routine is called automatically by _start() if the library was built with
__nios_use_cwpmgr__ = 1. It installs service routines for the Nios CPU
underflow and overflow exceptions. This function is declared in the
include file nios.h.

Syntax:

void nr_installcwpmanager(void);

General-Purpose System Routines

The following sections describe the routines that perform general-
purpose operations.

nr_delay

This routine causes program execution to pause for the number of
milliseconds specified in milliseconds. During this delay, the function
executes a tight countdown loop a fixed number of iterations, based on the
system clock frequency specified at the time the Nios CPU was defined.
This function is declared in the include file nios.h.

Syntax:

void nr_delay(int milliseconds);

The milliseconds parameter is the length of time, in milliseconds, for
program execution to be suspended.
24 Altera Corporation

Nios Software Development Reference Manual Overview

O
verview

1
nr_zerorange

This routine writes zero to a range of bytes starting at rangeStart and
counting up, writing rangeByteCount number of zero bytes. This function
is declared in the include file nios.h.

Syntax:

void nr_zerorange(char *rangeStart, int rangeByteCount);

Parameters

High-Level C
Support

These routines are always present in the Nios library, unless disabled in
the Makefile:

Parameter Name Description

rangeStart First byte to set to zero

rangeByteCount Number of consecutive bytes to set to zero

Table 7. High-Level C Support Routines

Routine Source File Description

printf nios_printf.c This version of the standard C printf() function omits all
support for floating point numbers, and supports only %d,
%x, %X, %c, and %s formats. The Nios library includes
this version of printf() because the standard library
routine takes about 40 Kbytes of Nios code. This large
footprint is primarily for floating point support, and the
Nios CPU is often used for applications that do not
require floating point. The Nios library version of printf()
is about 1 Kbyte of Nios code.

sprintf nios_printf.s This routine uses the Nios library’s version of printf() to
print to a string in memory.
Altera Corporation 25

Overview Nios Software Development Reference Manual
26 Altera Corporation

Altera Corporation
Routines

R

outines

2

Nios Peripheral
Routines

Table 8 summarizes C (or assembly) callable peripheral routines and
macros that are automatically added to the custom SDK library when the
corresponding peripherals are included in the Nios system design.

f See the Nios Embedded Processor Peripherals Reference Manual for more
information on the DMA, PIO, SPI, Timer, and UART peripherals,
including details on registers, bits, and peripheral template file (PTF)
assignments.

Table 8. Peripheral Routines Summary

Peripheral Routine Description

Debug Core nr_debug_start Initializes the debug core and begins monitoring instruction
and data busses

nr_debug_stop Halts debug core

nr_debug_dump_trace Dumps the full contents of trace memory in text format

nr_debug_isr_halt Interrupt service routine that dumps trace memory and
returns to the GERMS monitor

nr_debug_isr_continue Interrupt service routine that dumps trace memory and
continues normal execution

nm_debug_get_reg Gets a debug core register value

nm_debug_set_reg Sets a debug core register value

nm_debug_set_bp0 Sets up hardware breakpoint 0

nm_debug_set_bp1 Sets up hardware breakpoint 1

Direct Memory
Access (DMA)

nr_dma_copy_1_to_1 Transfers a range of bytes, half-words, or words between the
source address and destination address.nr_dma_copy_1_to_range

nr_dma_copy_range_to_range

nr_dma_copy_range_to_1

Parallel
Input/Output
(PIO)

nr_pio_showhex Converts a 16-bit value to display as two hex digits on a
seven-segment LED connected to a PIO.

Serial Peripheral
Interface (SPI)

nr_spi_rxchar Reads a character from the SPI peripheral whose address is
passed as an argument.

nr_spi_txchar Sends a single character to the SPI peripheral whose
address is passed as an argument.
 27

Routines Nios Software Development Reference Manual
Timer nr_timer_milliseconds Installs an interrupt service routine and returns zero the first
time it is called. For each subsequent call, returns the
number of milliseconds elapsed since the first call.

Universal
Asynchronous
Receiver/
Transmitter
(UART)

nr_uart_rxchar Reads a character from the UART whose address is passed
as an argument.

nr_uart_txcr Sends a carriage return and line feed to the UART at address
nasys_printf_UART.

nr_uart_txchar Sends a single character to the UART whose address is
passed as an argument.

nr_uart_txhex Prints an integer value, in hexadecimal, to the UART at
address nasys_printf_UART.

nr_uart_txhex16 Prints the value of a short integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txhex32 Prints the value of a long integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txstring Prints a null-terminated string to the UART at address
nasys_printf_UART.

Table 8. Peripheral Routines Summary

Peripheral Routine Description
28 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

Debug Core

Table 9. Debug Core Register Map

Index Register Name R/W Description/Register Bits

0 interrupt RO Bit 0: dbp0 (data breakpoint 0)
Bit 1: dbp1 (data breakpoint 1)
Bit 2: ibp0 (instruction breakpoint 0)
Bit 3: ibp1 (instruction breakpoint 1)
Bit 4: mem (memory breakpoint)

1 n_samples_lsb RO 16 least significant bits (LSBs) of the number of samples

2 n_samples_msb RO 16 most significant bits (MSBs) of the number of samples

3 data_valid RO True when a trace sample is loaded into the trace registers

4 trace_address RO Most recently read trace address

5 trace_data RO Most recently read trace data

6 trace_code RO Bit 0: skp = 0 (skip)
Bit 1: fifo_full
Bit 2: bus (instruction/data)
Bit 3: rw (read/write)
Bit 4: intr (interrupt)

Bit 0: skp = 1 (skip)
Bit 1: fifo_full
Bits 2-8: skp_cnt (skip count)

7 write_status RO Bit 0: writing
Bit 1: nios32
Bit 2: trace

8 start WO Any write: start debug core

9 stop WO Any write: stop debug core

10 read_sample WO Any write: initiate transfer of next available trace sample to the trace registers

11 trace_mode WO Write 1: enable extended trace mode. Write 0: disable extended trace mode

12 mem_int_enable WO Control number of trace samples accumulated before a memory interrupt is generated
If 0: no memory interrupt
If > 0: shift left by 2 for number of samples to collect

13 ext_break_enable WO Write 1: enable external break signal. Write 0: disable external break signal

14 sw_reset WO Any write: reset debug trace

16 address_pattern_0 WO Store breakpoint 0’s address pattern

17 address_mask_0 WO Store breakpoint 0’s address mask

18 data_pattern_0 WO Store breakpoint 0’s data pattern

19 data_mask_0 WO Store breakpoint 0’s data mask

20 code_0 WO Store breakpoint 0’s break code
Bit 0: read
Bit 1: write
Bit 2: fetch

24 address_pattern_1 WO Store breakpoint 1’s address pattern

25 address_mask_1 WO Store breakpoint 1’s address mask

26 data_pattern_1 WO Store breakpoint 1’s data pattern

27 data_mask_1 WO Store breakpoint 1’s data mask

28 code_1 WO Store breakpoint 1’s break code
Bit 0: read
Bit 1: write
Bit 2: fetch
Altera Corporation 29

Routines Nios Software Development Reference Manual
Debug Core Register Access

The debug core registers described in Table 9 are accessed through Nios
Control registers 3 and 4 using the WRCTL and RDCTL instructions.
Control register 3 acts as an index register, while control register 4 acts as
the data register.

To read a debug core register, you:

1. Write its index form the table above into control register 3.

2. Read its value from control register 4.

To write to a debug core register, you:

1. Write its index from the table above into control register 3.

2. Write the value to control register 4.

Debug Core Trace Data

Trace data is read from the core in reverse time order. That is, the first
sample read from the core is the most recent sample stored and the last
sample read from the core is the earliest sample stored.

Debug Core Interrupt

The debug core has a hard coded IRQ number. This number is defined in
nios.h and can be referenced as nasys_debug_core_irq.
30 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

Debug Core Software Routines and Macros

The debug core routines are always present in the Nios library. The
functions and macros are declared in the include file nios.h.

Trace data is also compressed, so the trace dumps provided by the
routines below must be processed with the tracelink utility (see
“tracelink” on page 86).

nr_debug_start

This routine resets the debug core and instructs it to begin monitoring the
instruction and data bus transactions.

Syntax

nr_debug_start();

nr_debug_stop

This routine causes the debug core to stop monitoring the instruction and
data busses.

Syntax

nr_debug_stop();

nr_debug_dump_trace

This routine dumps all accumulated trace samples in ASCII format out the
specified serial port. The output from this function can be used by the
tracelink utility to create a full instruction and data trace.

Syntax

nr_debug_dump_trace (void *uart)

Parameter

This parameter is maintained for compatibility with previous releases, but
is now ignored. This routine always prints out the default printf uart.
Altera Corporation 31

Routines Nios Software Development Reference Manual
nr_debug_isr_halt

This interrupt service routine for the Nios debug core can be installed with
the nr_installuserisr routine (see “nr_installuserisr” on page 22). The
nr_installuserisr context parameter is ignored. Trace dumps are sent out
the default printf uart.

Once installed, this routine executes on any debug core break condition,
dumping the interrupt cause followed by all trace samples accumulated
to the point the interrupt service routine was called. When all trace
samples are dumped, the interrupt service routine returns control to the
GERMS monitor.

nr_debug_isr_continue

This interrupt service routine for the Nios debug core can be installed with
the nr_installuserisr routine (see “nr_installuserisr” on page 22). The
nr_installuserisr context parameter is ignored. Trace dumps are sent out
the default printf uart.

Once installed, this routine executes on any debug core break condition,
dumping the cause of the interrupt followed by all trace samples
accumulated to the point the interrupt service routine was called. When
all trace samples are dumped, the interrupt service routine returns control
to the user program.

nm_debug_get_reg

This macro reads the value of a debug core register.

Syntax

nm_debug_get_reg (value,
offset);

Parameters

Parameter Name Description

value The specified register’s value

offset Debug core register index
32 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

nm_debug_set_reg

This macro writes a value to a debug core register.

Syntax

nm_debug_set_reg (value,
offset);

Parameters

nm_debug_set_bp0 and nm_debug_set_bp1

These macros store all the register values for breakpoint 0 and 1,
respectively.

Syntax

nm_debug_set_bp0 (address_pattern, address_mask,
data_pattern, data_mask,
break_code);

nm_debug_set_bp1 (address_pattern, address_mask,
data_pattern, data_mask,
break_code);

Parameters

The debug core uses the above parameters to determine when to trigger a
hardware break. The equation used is:

(Actual Bus Address & address_mask = address_pattern) &
(Actual Bus Data & data_mask = data_pattern) &
(Actual Bus Transaction & break_code!= 0)

Parameter Name Description

value Value to be written to the specified register’s value

offset Debug core register index
Altera Corporation 33

Routines Nios Software Development Reference Manual
DMA

Notes
(1) A write operation to the status register clears the len, weop, reop, and done bits.

DMA Software Data Structure

typedef volatile struct
{
 int np_dmastatus; // status register
 int np_dmareadaddress; // read address
 int np_dmawriteaddress; // write address
 int np_dmalength; // length in bytes
 int np_dmareserved1; // reserved
 int np_dmareserved2; // reserved
 int np_dmacontrol; // control register
 int np_dmareserved3; // reserved
} np_dma;

Table 10. DMA Register Map

A2..A0 Register
Name

R/W Description/Register Bits

31 . . . 9 8 7 6 5 4 3 2 1 0

0 status1 RW len weop reop busy done

1 readaddress RW Read master start address

2 writeaddress RW Write master start address

3 length RW Length in bytes

4 reserved1 – Reserved

5 reserved2 – Reserved

6 control RW wcon rcon leen ween reen i_en go word hw byte

7 reserved3 – Reserved
34 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

DMA Software Routines

The DMA routines are present in the Nios library when one or more DMA
peripherals are present in the Nios system. These functions are declared
in the include file nios.h.

nr_dma_copy_1_to_1

This routine transfers “transfer_count” units of data between the
unchanging source address and destination address.

Syntax

nr_dma_copy_1_to_1
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *source_address,
 void *destination_address,
 int transfer_count
);

Parameters

Parameter Name Description

dma Which DMA peripheral to use

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus size

source_address Address to transfer data from

destination_address Address to transfer data to

transfer_count Number of individual data transfers to perform
Altera Corporation 35

Routines Nios Software Development Reference Manual
nr_dma_copy_1_to_range

This routine transfers “transfer_count” units of data between the source
address and destination address. The same source address is used
repeatedly, while the destination address increments by
“bytes_per_transfer” each transaction.

Syntax

nr_dma_copy_1_to_range
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *source_address,
 void *first_destination_address,
 int transfer_count
);

Parameters

Parameter Name Description

dma Which DMA peripheral to use

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size

source_address Address to transfer data from

first_destination_address Address to transfer data to

transfer_count Number of individual data transfers to perform
36 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

nr_dma_copy_range_to_range

This routine transfers “transfer_count” units of data between the source
address and destination address. Both the source address and the
destination address increment by “bytes_per_transfer” each transaction.

Syntax

nr_dma_copy_range_to_range
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *first_source_address,
 void *first_destination_address,
 int transfer_count
);

Parameters

Parameter Name Description

dma Which DMA peripheral to use

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size

first_source_address Address to transfer data from

first_destination_address Address to transfer data to

transfer_count Number of individual data transfers to perform
Altera Corporation 37

Routines Nios Software Development Reference Manual
nr_dma_copy_range_to_1

This routine transfers “transfer_count” units of data between the source
address and destination address. The source address increments by
“bytes_per_transfer” each transaction, while the same destination address
is used repeatedly.

Syntax

nr_dma_copy_range_to_1
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *first_source_address,
 void *destination_address,
 int transfer_count
);

Parameters

Parameter Name Description

dma Which DMA peripheral to use

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size

first_source_address Address to transfer data from

destination_address Address to transfer data to

transfer_count Number of individual data transfers to perform
38 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

PIO

Note
(1) A write operation to the edgecapture register clears all bits in register 0.

PIO Software Data Structure

typedef volatile struct
{
 int np_piodata; // read/write, up to 32 bits
 int np_piodirection; // write/readable, up to 32 bits,
 // 1->output bit
 int np_piointerruptmask; // write/readable, up to 32 bits,
 // 1->enable interrupt
 int np_pioedgecapture; // read, up to 32 bits,
 // cleared by any write
} np_pio;

Example: Direct access to PIO

void TurnOnLEDs(void)
{

// the reference design has a PIO named na_led_pio
// that controls two LEDs on the development board

 na_led_pio->np_piodirection = 3; // Set direction: output
 na_led_pio->np_piodata = 0; // both LEDs off
 nr_delay(1000); // wait 1 second
 na_led_pio->np_piodata = 1; // turn on first led
 nr_delay(1000); // wait 1 second
 na_led_pio->np_piodata = 3; // both LEDs on
}

Table 11. PIO Register Map

A1..A0 Register Name R/W Variable Size—1 to 32 bits

0 data read RO Data value currently on PIO inputs

write WO New value to drive on PIO outputs

1 direction RW Data direction (optional): Individual control for each PIO bit

2 interruptmask RW Interrupt mask (optional): Per-bit IRQ enable/disable

3 edgecapture1 RW Edge capture (optional): Per-bit synchronous edge detect and hold
Altera Corporation 39

Routines Nios Software Development Reference Manual
PIO Software Routine: nr_pio_showhex

The nr_pio_showhex routine is present in the Nios library when one or
more PIO peripherals are present in the Nios system. This function is
declared in the include file nios.h.

The nr_pio_showhex routine assumes a 16-bit wide PIO named
“na_seven_seg_pio” is attached to a two-digit seven-segment display, in
which segments are illuminated when the corresponding bits are set to 0.
PIO bits are assigned to the seven-segment display elements as shown:

Figure 1. Seven-Segment Display

Syntax

void nr_pio_showhex(int value);

Parameter

The value parameter indicates the data to be sent to the seven-segment
display.

Example

#include "nios.h"

void main(void)
{
 int c;

 printf("Please enter a character:\n");

 while((c = nr_uart_rxchar(0)) == -1); // wait for valid input

 nr_pio_showhex(c);
 printf("Your character is:\t%c, in hex:0x%02x\n", c, c);
}

14

8

1511

12

13

10

9

6

0

73

4

5

2

1

40 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

SPI Table 12 shows a register map for SPI master and slave devices with an
n-bit transmit/receive shift register operating as master and slave devices.

Notes
(1) A write operation to the status register clears the roe, toe, and e bits.

SPI Software Data Structure

typedef volatile struct
{
 int np_spirxdata; // Read-only, 1-16 bit
 int np_spitxdata; // Write-only, 1-16 bit
 int np_spistatus; // Read-only, 9-bit
 int np_spicontrol; // Read/Write, 9-bit
 int np_spireserved; // reserved
 int np_spislaveselect; // Read/Write, 1-16 bit, master only
} np_spi;

Table 12. SPI Register Map

A2..A0 Register
Name

R/W Description/Register Bits

15 . . . 8 7 6 5 4 3 2 1 0

0 rxdata RO rxdata(n-1..0)

1 txdata WO txdata(n-1..0)

2 status1 RW e rrdy trdy tmt toe roe

3 control RW ie irrdy itrdy itoe iroe

4 reserved – Present only on master

5 slaveselect RW Slave select mask—present only on master
Altera Corporation 41

Routines Nios Software Development Reference Manual
SPI Software Routines

The SPI routines are present in the Nios library when one or more SPI
peripherals are present in the Nios system. These functions are declared
in the include file nios.h.

nr_spi_rxchar

This routine reads a character from the SPI peripheral whose address is
passed as pSPI.

Syntax

int nr_spi_rxchar(np_spi *pSPI);

Parameter

The pSPI parameter is a pointer to the SPI peripheral.

nr_spi_txchar

This routine sends a single character, i, to the SPI peripheral whose
address is passed as pSPI.

Syntax

int nr_spi_txchar(int i, np_spi *pSPI);

Parameters

Parameter Name Description

i Character to be sent

pSPI Pointer to the SPI peripheral
42 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

Timer

Notes
(1) A write operation to either the snapl or snaph registers updates both registers with a coherent snapshot of the

current internal counter value.

Timer Software Data Structure

typedef volatile struct
{
 int np_timerstatus; // read only, 2 bits (any write to clear TO)
 int np_timercontrol; // write/readable, 4 bits
 int np_timerperiodl; // write/readable, 16 bits
 int np_timerperiodh; // write/readable, 16 bits
 int np_timersnapl; // read only, 16 bits
 int np_timersnaph; // read only, 16 bits
} np_timer;

Table 13. Timer Register Map

A2..A0 Register
Name

R/W Description/Register Bits

15 . . . 3 2 1 0

0 status RW run to

1 control RW stop start cont ito

2 periodl RW Timeout Period – 1 (bits 15..0)

3 periodh RW Timeout Period – 1 (bits 31..16)

4 snapl1 RW Timeout Counter Snapshot (bits 15..0)

5 snaph1 RW Timeout Counter Snapshot (bits 31..16)
Altera Corporation 43

Routines Nios Software Development Reference Manual
Example: Direct access to Timer

#include "nios.h"

int main(void)
 {
 int t = 0;

 // Set timer for 1 second
 na_timer1->np_timerperiodl = (short)(nasys_clock_freq & 0x0000ffff);
 na_timer1->np_timerperiodh = (short)((nasys_clock_freq >> 16) & 0x0000ffff);

 // Set timer running, looping, no interrupts
 na_timer1->np_timercontrol = np_timercontrol_start_mask + np_timercontrol_cont_mask;

 // Poll timer forever, print once per second
 while(1)
 {
 if(na_timer1->np_timerstatus & np_timerstatus_to_mask)
 {
 printf("A second passed! (%d)\n",t++);

 // Clear the to (timeout) bit
 na_timer1->np_timerstatus = 0; // (any value)
 }
 }
 }

Timer Software Routine: nr_timer_milliseconds

The nr_timer_milliseconds routine is present in the Nios library when one
or more Timer peripherals are present in the Nios system. This function is
declared in the include file nios.h.

This routine requires the existence of a Timer called timer1, with a base
address defined by na_timer1 and an interrupt number defined by
na_timer1_irq. The first time this routine is called, it installs an interrupt
service routine for the Timer and returns zero. For each subsequent call,
the number of milliseconds elapsed since the first call is returned.

Syntax

int nr_timer_milliseconds(void);
44 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

UART

Notes
(1) A write operation to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.
(2) status register bit 8 (e) is the logical OR of the toe, roe, brk, fe, and pe bits.

UART Software Data Structure

typedef volatile struct
{
 int np_uartrxdata; // Read-only, 8-bit
 int np_uarttxdata; // Write-only, 8-bit
 int np_uartstatus; // Read-only, 9-bit
 int np_uartcontrol; // Read/Write, 9-bit
 int np_uartdivisor; // Read/Write, 16-bit, optional
 int np_uartendofpacket; // Read/Write, end of packet character
} np_uart;

UART Software Routines

The UART routines are present in the Nios library when one or more
UART peripherals are present in the Nios system. These functions are
declared in the include file nios.h.

Table 14. UART Register Map

A2..A0 Register
Name

R/W Description/Register Bits

15 . . . 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO RxData

1 txdata WO TxData

2 status1 RW eop cts dcts – e2 rrdy trdy tmt toe roe brk fe pe

3 control RW ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor RW Baud Rate Divisor (optional)

5 endofpacket RW End-packet value
Altera Corporation 45

Routines Nios Software Development Reference Manual
nr_uart_rxchar

This routine reads a character from the UART peripheral whose address
is passed in uartBase. If no character is waiting, nr_uart_rxchar returns -1.
If zero is passed for the peripheral address, nr_uart_rxchar reads a
character from the UART at location nasys_printf_uart (nios.h).

Syntax

int nr_uart_rxchar(np_uart *uartBase);

Parameter

The uartBase parameter is a pointer to the UART peripheral.

Example

#include "nios.h"

void main(void)
{
 int c;

 printf("Please enter a character:\n");

 while((c = nr_uart_rxchar(nasys_printf_UART)) == -1)
 ; // wait for valid input

 printf("Your character is:\t%c\n", c);
}

nr_uart_txchar

This routine sends a single character, c, to the UART peripheral whose
address is passed as uartBase. If zero is passed for the peripheral address,
nr_uart_txchar sends a character to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txchar(int c, np_uart *uartBase);

Parameters

Parameter Name Description

c Character to be sent

uartBase Pointer to the UART peripheral
46 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

Example

#include "nios.h"

#define kLineWidth 77
#define kLineCount 100

void SendLots(void)
{
 char c;
 int i,j;
 int mix;

 printf("\n\nPress character, or <space> for mix: ");
 while((c = nr_rxchar(0)) < 0);

 printf("%c\n\n",c);

 // Don’t show unprintables

 if(c < 32)
 c = ’.’;

 mix = c==’ ’;

 for(i = 0; i < kLineCount; i++)
 {
 for(j = 0; j < kLineWidth; j++)
 {
 if(mix)
 {
 c++;
 if(c >= 127)
 c = 33;
 }
 nr_uart_txchar(c,nasys_printf_UART);
 // send character to UART
 }
 nr_uart_txcr();
 // send carriage return and new line

 }
 printf("\n\n");
}

Altera Corporation 47

Routines Nios Software Development Reference Manual
nr_uart_txcr

This routine sends a carriage return and line feed to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txcr(void);

nr_uart_txhex

This routine prints the integer value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range for a 16-bit Nios
CPU is 0000 to FFFF, and for a 32-bit Nios CPU is 00000000 to FFFFFFFF.

Syntax

int nr_uart_txhex(int x);

Parameter

The x parameter is an integer value to be sent to UART.

nr_uart_txhex16

This routine prints the 16-bit value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range is from 0000 to
FFFF.

Syntax

int nr_uart_txhex16(short x);

Parameter

The x parameter is a 16-bit integer value to be sent to UART.
48 Altera Corporation

Nios Software Development Reference Manual Routines

R
outines

2

nr_uart_txhex32

This routine prints the 32-bit value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range is from 00000000
to FFFFFFF. This routine is not available on a 16-bit Nios CPU.

Syntax

int nr_uart_txhex32(long x);

Parameter

The x parameter is a 32-bit integer value to be sent to UART.

nr_uart_txstring

This routine prints the null-terminated string s to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txstring(char *s);

Parameter

The s parameter is a pointer to a null-terminated character string.
Altera Corporation 49

Routines Nios Software Development Reference Manual
50 Altera Corporation

Altera Corporation
Utilities

U

tilities

3

Nios Software
Development
Utilities

The GNUPro software tools included in the Nios development kit contain
several general-purpose software development utilities, including the
Nios SDK Shell command line. Nios software is developed in the bash
environment. The SDK Shell provides a UNIX-like environment on a PC
platform, including most of the commands and utilities UNIX users are
accustomed to using. For details, enter “man bash” at the shell prompt
found at C:\Altera\Excalibur\sopc_builder_2_5\Nios SDK Shell.

Additionally, many Nios-specific utilities are included in the
development kit for generating and debugging software. This chapter
provides detailed descriptions of these utilities.

Table 15. Nios Utilities

Utility Name Description

hexout2flash Perl script that converts a Quartus II .hexout file (device configuration file) to a .hexout.flash
file suitable for writing to flash memory on the Nios development board

nios_bash Startup script to set the bash environment for Nios development (bash shell)

nios-build Perl script that performs compilation and assembly of source files, links to Nios library, and
generates .srec file, suitable to download to the Nios development board (see nios-run)

nios-convert Perl script to convert .srec files to .mif or .dat file format suitable for initializing on-chip memory

nios_csh Startup script to set the bash environment for Nios development (C shell)

nios-elf-as GNU assembler for Nios

nios-elf-gcc GNU C/C++ compiler for Nios

nios-elf-gdb GNU debugger for Nios

nios-elf-gprof GNU C program execution profiler

nios-elf-ld GNU linker for Nios

nios-elf-nm GNU tool to extract symbols from Nios object files

nios-elf-objcopy GNU utility to convert linker output (.out) to S-records (.srec)

nios-elf-objdump GNU tool to disassemble Nios object files

nios-elf-size GNU utility to produce an object file size report for code (text), data (data), and uninitialized
storage (bss).

nios-run Utility for downloading and running a user .srec file, by performing terminal I/O

srec2flash Perl script that converts a .srec file to a .flash file, suitable for writing to the Nios development
board flash (software)

tracelink Associates a Nios object file and a trace dump file to generate an assembly listing of all
instructions traced, including all data accesses, skipped instructions, and interrupts.
 51

Utilities Nios Software Development Reference Manual
hexout2flash The Quartus II and MAX+PLUS II software generate configuration files
for download to an Altera PLD. One configuration file format generated
by Quartus II is .hexout. hexout2flash converts a .hexout file to a .flash
file, suitable for writing to the flash device on the Nios development
board. hexout2flash creates a sequence of GERMS monitor commands to
erase a section of flash memory and relocate the .hexout file to the erased
section.

f See the Nios Development Board Data Sheet for details on the Nios
development board.

Usage

hexout2flash [options] <filename>[.hexout]

Options

Example

1. For a file called my_design.hexout, enter:

hexout2flash my_design.hexout

hexout2flash converts my_design.hexout to
my_design.hexout.flash.

2. To download the .flash file to the development board, enter:

nios-run my_design.hexout.flash

The design is written into flash memory at location 0x180000 and becomes
the default booting design for the development board.

Table 16. hexout2flash Options

Option Description

-b <base address> Location in flash to write file (default 0x180000)

--help Print help
52 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

nios_bash nios_bash is a startup script that properly sets the bash shell environment
for software development using nios-build. nios-build requires two shell
variables to exist and be exported. A normal Windows install of the Nios
development utilities sets up these variables automatically. The shell
variables are:

■ niosgnu = <Nios GNU tools location>
The default location is
/altera/excalibur/sopc_builder_2_5/bin/nios-gnupro

■ niosbin = <Nios bin location>
The default location is /altera/excalibur/sopc_builder_2_5/bin

Usage

Source this script from the .bash_profile at shell startup time. It adds the
paths and shell variables needed to use the Nios tools.
Altera Corporation 53

Utilities Nios Software Development Reference Manual
nios-build nios-build is a Perl script that invokes the tools to compile, assemble, and
link Nios source code. It ensures the standard C libraries and standard
Nios libraries are linked with the user source code, and the associated
“include” paths are available. Most programs compile with no command
line options; reasonable defaults are assumed.

1 nios-build is a simple alternative to the Makefile. Use of
Makefiles is fully supported by the Nios software development
environment. For an example Makefile, see .../lib/Makefile. For
details on using Makefiles, see the GNU on-line documentation
by choosing Programs > Cygwin > Cygwin Documentation
(Windows Start Menu). In the help window that appears, click
Using make.

nios-build produces a file with the base name of the last source file on the
command line and the suffix .srec. The file is ready for downloading to the
Nios development board, which must have the GERMS monitor running.

Source files are listed on the command line following the options. If only
one source file is specified, nios-build searches the current directory for
files with the same base name and underscore extensions.

Files ending with .s or .asm are passed to nios-elf-as. Files ending with .c
are passed to nios-elf-gcc. Files ending with .o are passed to nios-elf-ld.

Usage

nios-build [options] <sourcefile>.[sco]
54 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

Options

Example

nios-build foo.c bar.s

Multiple files listed in the command line, as shown above, generate the
executable file bar.srec.

nios-build helloworld.c

If the files helloworld_2.c and helloworld_3.s are in the same directory,
they are included in the build and the result is helloworld.srec.

Table 17. nios-build Options

Option Description

-b <base address> Set code base address

-m16 Generate code for Nios 16

-m32 Generate code for Nios 32 (default)

-as <quoted string> Pass command line options to assembler

-cc <quoted string> Pass command line options to compiler

-ld <quoted string> Pass command line options to linker

-d Set NIOS_GDB=1 and generate debug script

-s Silent mode (only print errors)

-l <file name> Include system library

-o <file name> Output file name

--help Print help

--help 1 Print more help
Altera Corporation 55

Utilities Nios Software Development Reference Manual
nios-convert nios-convert is a Perl script that converts files from one format to another.
Source files can be .srec or .mif; destination files can be .mif or .dat.

nios-convert’s primary functions are:

■ Convert executable software code or data files (.srec format) to
initialization files for on-chip memory (.mif format) in the Altera
PLD.

■ Convert the data width. This is useful, for example, to store 32-bit
data in an off-chip 16-bit flash.

■ Break wide data into multiple byte lanes. This is useful, for example,
to break 32-bit data into two lanes of 16-bit data to write into two off-
chip 16-bit flash memories used in parallel.

Destination files are named the same as the source file if no destination file
name is specified.

Usage

nios-convert [options] <source file> [destFile]

Options

Example

nios-convert bootcode.srec bootcode.mif

converts file bootcode.srec to bootcode.mif.

Table 18. nios-convert Options

Option Description

--lanes=x Break into multiple output files lane_0 .. _lane_(x-1) appended

--width=x Set output width to 8, 16, or 32

--oformat=f Format can be mif or dat

--comments=b Comments in mif file enabled (1) or disabled (0). Default is
enabled.

--help Print help
56 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

nios_csh nios_csh is a startup script that properly sets the C shell environment for
software development using nios-build.

Usage

Source this script from the .login at shell startup time.

Example

source /altera/excalibur/sopc_builder_2_5/bin/nios_csh

If the .../altera/ directory is at a location other than /usr/altera, assign that
location to the shell variables “altera”. For example:

set altera = /downloads/altera
source /downloads/altera/excalibur/nios-sdk/nios_bash
Altera Corporation 57

Utilities Nios Software Development Reference Manual
nios-elf-as nios-elf-as is a Nios assembler that produces a relocatable object file from
assembly language source code. The object file contains the binary code
and debug symbols.

If you use nios-build to generate executable code from assembly source,
nios-elf-as is invoked automatically. It may be useful, however, to have a
working knowledge of the assembler command line options to help
optimize your assembly source code.

Usage

nios-elf-as [option...] [asmfile...]

Options

Table 19. nios-elf-as Options

Option Description

-a[sub-option...] Turn on listings

 Sub-Options

c Omit false conditionals

d Omit debugging directives

h Include high-level source

l Include assembly

m Include macro expansions

n Omit forms processing

s Include symbols

L Include line debug statistics

=file Set listing file name (must be last sub-option)

-D Produce assembler debugging messages

--defsym SYM=VAL Define symbol SYM to given value

-f Skip white space and comment preprocessing

--gstabs Generate STABS debugging information

--gdwarf2 Generate DWARF2 debugging information

--help Show this message and exit

-I DIR Add DIR to search list for .include directives

-J Do not warn about signed overflow

-K Warn when differences altered for long displacements

-L
--keep-locals

Keep local symbols (such as starting with “L”)
58 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

f For more information on using the GNU assembler, see the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation (Windows Start Menu). In the help window that appears,
click Using as.

-M
--mri

Assemble in MRI compatibility mode

--MD <file> Write dependency information in <file> (default none)

-nocpp Ignored

-o <objfile> Name the object file output <objfile> (default a.out)

-R Fold data section into text section

--statistics Print various measured statistics from execution

--strip-local-absolute Strip local absolute symbols

--traditional-format Use same format as native assembler when possible

--version Print assembler version number and exit

-W
--no-warn

Suppress warnings

--warn Do not suppress warnings

--fatal-warnings Treat warnings as errors

--itbl <insttbl> Extend instruction set to include instructions matching the
specifications defined in file <insttbl>

-w Ignored

-X Ignored

-Z Generate object file even after errors

--listing-lhs-width Set width in words of the output data column of the listing

--listing-lhs-width2 Set width in words of the continuation lines of the output
data column; ignored if smaller than first line’s width

--listing-rhs-width Set max width in characters of the lines from the source file

--listing-cont-lines Set maximum number of continuation lines used for the
output data column of the listing

Table 20. Nios-Specific Command Line Options

Option Description

-m16 Nios-16 processor (16-bit)

-m32 Nios-32 processor (32-bit)

Table 19. nios-elf-as Options

Option Description
Altera Corporation 59

Utilities Nios Software Development Reference Manual
nios-elf-gcc The GNU compiler invokes the necessary utilities:

If you use nios-build to generate executable code, nios-elf-gcc is invoked
automatically. It may be useful, however, to have a working knowledge
of the C compiler command line options to help optimize your C code.

Usage

nios-elf-gcc [options] file…

Options

Utility Description

cpp C preprocessor that processes all the header files and macros the target
requires

gcc Compiler that produces assembly language code from the processed C
files

as Assembler that produces binary code from the assembly language source
code and puts it in an object file

ld Linker that binds the code to addresses, links the startup file and libraries
to the object code, and produces the executable binary image

Table 21. nios-elf-gcc Options

Option Description

-pass-exit-codes Exit with highest error code from a phase

--help Display this information (Enter “-v --help” to display
command line options of sub-processes)

-dumpspecs Display all built-in Spec strings

-dumpversion Display compiler version

-dumpmachine Display compiler’s target processor

-print-search-dirs Display directories in the compiler’s search path

-print-libgcc-file-name Display compiler’s companion library name

-print-file-name=<lib> Display full path to library <lib>

-print-prog-name=<prog> Display full path to compiler component <prog>

-print-multi-directory Display root directory for versions of libgcc

-print-multi-lib Display mapping between command line options and
multiple library search directories

-Wa,<options> Pass comma-separated <options> onto assembler

-Wp,<options> Pass comma-separated <options> onto preprocessor
60 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

Options starting with -g, -f, -m, -O or -W are automatically passed onto the
sub-processes invoked by nios-elf-gcc. To pass other options onto these
processes, the -W<letter> options must be used.

-Wl,<options> Pass comma-separated <options> onto linker

-Xlinker <arg> Pass <arg> onto linker

-save-temps Do not delete intermediate files

-pipe Use pipes rather than intermediate files

-time Time the execution of each subprocess

-specs=<file> Override built-in specs with contents of <file>

-std=<standard> Assume input sources are for <standard>

-B <directory> Add <directory> to compiler’s search paths

-b <machine> Run gcc for target <machine>, if installed

-V <version> Run gcc version number <version>, if installed

-v Display programs invoked by compiler

-E Preprocess only; do not compile, assemble, or link

-S Compile only; do not assemble or link

-c Compile and assemble, but do not link

-o <file> Place output into <file>

-x <language> Specify language of the following input files.
Permissible languages are “c”, “c++”, “assembler”, and
“none” (deduce language based on file extension).

-pg Compile with profiling

Table 21. nios-elf-gcc Options

Option Description
Altera Corporation 61

Utilities Nios Software Development Reference Manual
Table 22 lists Nios-specific options for nios-elf-gcc. The variable x used in
this table can be 0, 1, 2, 3, or 4. The variable w can be any number from
-1024 through 2047.

Table 22. Nios-Specific Options for nios-elf-gcc

Option Description

-m16
-m32

Generate output for Nios 16 or Nios 32.

-mfewer-opcodes Do not generate the opcodes LDS, LDP, STS, STP, STS8S, ST8S, STS16S,
and ST16S.

-mmax-address=HEXADDR Do not generate unnecessary PFX 0 and/or MOVHI 0 opcodes. When
HEXADDR <= 0xffff, PFX/MOVHI instruction pairs will not be generated for
addresses. When 0x10000 <= HEXADDR <= 0x1fffff, PFX instructions will not
be generated before MOVHI instructions for addresses. HEXADDR is a
hexadecimal address between 0 and ffffffff, optionally prefixed by “0x”.

-muser-opcode-mul=pfxw,usrx
-muser-opcode-mul=usrx

Generate USRx instructions for signed integer multiplication. For example:
 int result, dataa, datab;

 result = dataa * datab;

A non-zero prefix is optional.

-muser-opcode-div=pfxw,usrx
-muser-opcode-div=usrx

Generate USRx instructions for signed integer division. For example:
 int result, dataa, datab;

 result = dataa / datab;

A non-zero prefix is optional.

-muser-opcode-udiv=pfxw,usrx
-muser-opcode-udiv=usrx

Generate USRx instructions for unsigned integer division. For example:
 unsigned int result, dataa, datab;

 result = dataa / datab;

A non-zero prefix is optional.

-muser-opcode-mod=pfxw,usrx
-muser-opcode-mod=usrx

Generate USRx instructions for signed integer modulus. For example:
 int result, dataa, datab;

 result = dataa % datab;

A non-zero prefix is optional.

-muser-opcode-umod=pfxw,usrx
-muser-opcode-umod=usrx

Generate USRx instructions for unsigned integer modulus. For example:
 unsigned int result, dataa, datab;

 result = dataa % datab;

A non-zero prefix is optional.

-muser-opcode-extv=usrx Generate prefixed USRx instructions for signed bit-field extraction. The prefix
instruction’s 11-bit immediate value is 1wwwwwppppp, where ppppp is the bit
position of the rightmost bit of the field to extract (LSB = 0), and wwwww is the
field’s width in bits. USRx must sign extend the extracted bit-field value to a full
integer.
62 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

f For more details on using the GNU compiler, refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation (Windows Start Menu). In the help window that appears,
click Using GNU CC.

-muser-opcode-extzv=usrx Generate prefixed USRx instructions for unsigned bit-field extraction. The
prefix instruction’s 11-bit immediate value is 0wwwwwppppp, where ppppp is
the bit position of the rightmost bit of the field to extract (LSB = 0), and wwwww
is the field’s width in bits. USRx must zero-extend the extracted bit-field value
to a full integer.

-muser-opcode-insv=usrx Generate prefixed USRx instructions for bit-field insertion. The prefix
instruction’s 11-bit immediate value is 0wwwwwppppp, where ppppp is the bit
position of the rightmost bit of the field to insert (LSB = 0), and wwwww is the
field’s width in bits.

-muser-opcode-umax=pfxw,usrx
-muser-opcode-umax=usrx

Generate USRx instructions for unsigned integer maximum. C++ only.

-muser-opcode-smax=pfxw,usrx
-muser-opcode-smax=usrx

Generate USRx instructions for signed integer maximum. C++ only.

-muser-opcode-umin=pfxw,usrx
-muser-opcode-umin=usrx

Generate USRx instructions for unsigned integer minimum. C++ only.

-muser-opcode-smin=pfxw,usrx
-muser-opcode-smin=usrx

Generate USRx instructions for signed integer minimum. C++ only.

-muser-opcode-ffs=pfxw,usrx
-muser-opcode-ffs=usrx

Generate USRx instructions for the internal ffs() function. ffs() finds the first set
bit of its int operand starting from the right, and returns that bit position,
incremented by 1. The USRx instruction must return 0 for an input of 0.

Table 22. Nios-Specific Options for nios-elf-gcc

Option Description
Altera Corporation 63

Utilities Nios Software Development Reference Manual
nios-elf-gdb The GNU debugger (GDB) shows either what is going on inside another
program while it executes, or what another program was doing the
moment it stopped. GDB can:

■ Start the program and specify anything that might affect its behavior
■ Stop the program based on a set of specific conditions
■ Examine what happened once the program is stopped
■ Change the program to fix bugs and continue testing

Use GDB to debug programs written in assembly, C, and C++.

Usage

To debug a program using nios-build and nios-elf-gdb:

v Use nios-build with the “-d” command line option.

nios-build produces a file with the extension .gdb, which is a shell script
for downloading the program and running nios-elf-gdb. If your design
includes separate serial ports for host communication and debug
communications, nios-build -d will assign COM1 for host
communication and COM2 for serial communication. You can override
these assignments using the following command line options:

-d=<debug com port>

-p=<host com port>

1 In previous versions of the Nios processor, to debug a program
using nios-build and nios-elf-gdb, a line with
“NIOS_GDB_SETUP” was required as the first statement in the
main() routine.

Options

Table 23. nios-elf-gdb Options

Option Description

--[no]async Enable (disable) asynchronous version of CLI

-b <baudrate> Set serial port baud rate used for remote debugging

--batch Exit after processing options

--cd=<dir> Change current directory to <dir>

--command=<file> Execute GDB commands from <file>

--core=<corefile> Analyze the core dump <corefile>
64 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

f For more information, type help from within GDB, or consult the GDB
manual (available as on-line information or a printed manual).

For more details on using the GNU debugger, refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation (Windows Start Menu). In the help window that appears,
click Debugging with GDB.

--dbx DBX compatibility mode

-d [=<COM port>] Set NIOS_GDB=1, generate debug script and optionally
assign the com port for debug communication

--directory=<dir> Search for source files in <dir>

--epoch Output information used by epoch emacs-GDB interface

--exec=<execfile> Use <execfile> as the executable

--fullname Output information used by emacs-GDB interface

--help Print this message

--interpreter=<interp> Select a specific interpreter/user interface

--mapped Use mapped symbol files if supported on this system

--nw Do not use a window interface

--nx Do not read gdb.ini file

-p=<COM port> Only use with -d option to set COM port for host
communication

--quiet Do not print version number on startup

--readnow Fully read symbol files on first access

--se=<file> Use <file> as symbol file and executable file

--symbols=<symfile> Read symbols from <symfile>

--tty=<tty> Use <tty> for input/output by the program being debugged

--version Print version information and then exit

-w Use a window interface

--write Set writing into executable and core files

--xdb XDB compatibility mode

Table 23. nios-elf-gdb Options

Option Description
Altera Corporation 65

Utilities Nios Software Development Reference Manual
nios-elf-gprof nios-elf-gprof produces an execution profile of a C program.

Usage

nios-elf-gprof [option(s)] [objfile] gmon.out

Options

Table 24. nios-elf-gprof Options

Option Description

-a Suppresses printing of statically declared functions

-b Suppresses printing of a description of each field in the
profile

-c The static call graph of the program is discovered by a
heuristic that examines the text space of the object file.
Static-only parents or children are shown with call
counts of 0.

-e <name> Suppresses printing of the graph profile entry for
routine name and all its descendants (unless they
have other unsuppressed ancestors)

-E <name> Suppresses printing of graph profile entry for routine
name and its descendants, and excludes the time
spent in <name> and its descendants from the total
and percentage time computations

-f <name> Prints graph profile entry of only the specified routine
name and its descendants

-F <name> Prints graph profile entry of only the routine name and
its descendants, and uses only the times of the printed
routines in total time and percentage computations

-k <fromname> <toname> Deletes any arcs from routine <fromname> to routine
<toname>

-s Produces a profile file gmon.sum that represents the
sum of the profile information in all specified profile
files

-v Prints gprof version number and exits

-z Displays routines with zero usage (as shown by call
counts and accumulated time)
66 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

Example

1. To see a profile for a C program, compile it with the “-pg” gcc option.
For example, to profile hello_world.c, enter:

nb hello_world.c -cc -pg

2. In addition to the normal text output when it is run, the program
outputs hexadecimal bytes preceded by “###”. These bytes must be
converted into a binary file to be fed to the nios-elf-gprof profiling
program. For example, enter:

nr hello_world.srec | tee hello_world.txt

The output is:

nios-run: Downloading..
...
...
...
...
...
.............................
nios-run: Terminal mode (Control-C exits)

Hello from Nios.

00 01 04 00 8c 2e 04 00 d2 16 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
….
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 *
88 01 04 00 20 01 04 00 03 00 00 00 *
dc 01 04 00 20 01 04 00 01 00 00 00 *
f4 13 04 00 5c 01 04 00 01 00 00 00 *

The file hello_world.txt, which captures the above text, is created.

The utility nios-gprof-convert is a Perl script that strips away the
numbers followed by ### and converts them to binary. The result is
saved in the file gmon.out. This utility takes one argument
(<filename>) as its only input.
Altera Corporation 67

Utilities Nios Software Development Reference Manual
3. Enter:

nios-gprof-convert hello_world.txt

The output is:

Nios Gprof Conversion Utility
Input file: hello_world.txt
Output file: gmon.out

4. nios-elf-gprof requires the files hello_world.out and gmon.out.
Enter:

nios-elf-gprof -C -q hello_world.out --traditional gmon.out > hello_world.profile

This command uses the objfile hello_world.out to gather the
symbols and interpret gmon.out.

The end result is in hello_world.profile. The output is:

time is in ticks, not seconds

call graph profile:
 The sum of self and descendents is the major sort for this listing.
function entries:
 .
 .
 .
granularity: each sample hit covers 4 byte(s) for 4.76% of 21.00 seconds
 called/total parents
index %time self descendents called+self name index
 called/total children
 <spontaneous>
[1] 61.9 13.00 0.00 txCharWait [1]

 <spontaneous>
[2] 23.8 5.00 0.00 nr_uart_txchar [2]

 <spontaneous>
[3] 9.5 2.00 0.00 PrivatePrintf [3]

 <spontaneous>
[4] 4.8 1.00 0.00 profile_on [4]

 0.00 0.00 1/1 done_calling_constructors [20]
[5] 0.0 0.00 0.00 1 main [5]

Index by function name
 [3] PrivatePrintf [2] nr_uart_txchar [1] txCharWait
 [5] main [4] profile_on

1 The Perl script nios-run-gprof, which automatically executes all
the above steps, is also provided in the Nios SDK.
68 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

Advanced Usage

In some instances, the default settings are not suitable to profile user code.
You can manipulate the sampling rate and code chunk size parameters by
editing nios_gprof.c in the .../sdk/lib directory. To do this, some
understanding of the profiling method is necessary.

In profiling, the compiler adds a call to _mcount at the beginning of each
function, including main(), and interrupts the user code at a specific rate.
The first call to _mcount() sets up all the data structures, buffers, and the
interrupt service routine. Subsequent calls trace the calling sequence.
While the profiled program is running, the timer (timer1) interrupts at its
rate (default is 10,000 interrupts per second), and increments a counter
corresponding to the interruptee’s PC. Each code chunk of size
HISTFRACTION has a corresponding 16-bit counter. The counter starts
initialized to zero and increments each time the timer interrupt routine
interrupts this code chunk (the HISTFRACTION default value is 2, which
will at least double the memory size requirement).

Some potential problems and their possible solutions are:

■ Interrupt rate is too fast, causing counters to overflow
Solution: decrease sampling rate (TIMER_SAMPLE_RATE constant)
specified in interrupts per second

■ Interrupt rate is too slow, causing non-repeatable, coarse results.
Solution: increase sampling rate

■ Out of memory message appears when allocating buffers
Solution: increase code chunk size (HISTFRACTION constant) by
powers of 2

1 As code chunk size increases, resolution decreases, thus the
wrong counter may be incremented.

To implement changes, edit .../sdk/lib/nios_gprof.c. Recreate the library
by typing “make all”.

1 You can exclude code from profiling by compiling different
modules with or without the -pg option. For example, if a
program consists of my_main.c, mod_1.c, and mod_2.c, and the
critical elements to profile are in mod_1.c, compile the modules
my_main.c and mod_2.c without the -pg option, and compile
mod_1.c with the -pg option.
Altera Corporation 69

Utilities Nios Software Development Reference Manual
nios-elf-ld The GNU linker resolves the code addresses and debug symbols, links the
startup code and additional libraries to the binary code, and produces an
executable binary image.

If you use nios-build to generate executable code, nios-elf-ld is invoked
automatically. It may be useful, however, to have a working knowledge
of the linker command line options.

Usage

nios-elf-ld [options] file…

Options

Table 25. nios-elf-ld Options

Option Description

-a <keyword> Shared library control for HP/UX compatibility

-A <arch>
--architecture <arch>

Set architecture

-b <target>
--format <target>

Specify target for following input files

-c <file>
--mri-script <file>

Read MRI format linker script

-d
-dc
-dp

Force common symbols to be defined

-e <address>
--entry <address>

Set start address

-E
--export-dynamic

Export all dynamic symbols

-EB Link big-endian objects

-EL Link little-endian objects

-f <shlib>
--auxiliary <shlib>

Auxiliary filter for shared object symbol table objects

-F <shlib>
--filter <shlib>

Filter for shared object symbol table

-g Ignored

-G <size>
--gpsize <size>

Small data size (if no size, same as --shared)

-h <filename>
-soname <filename>

Set internal name of shared library
70 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

-l <libname>
--library <libname>

Search for library <libname>

-L <directory>
--library-path <directory>

Add <directory> to library search path

-m <emulation> Set emulation

-M
--print-map

Print map file on standard output

-n
--nmagic

Do not page align data

-N
--omagic

Do not page align data, do not make text read only

-o <file>
--output <file>

Set output file name

-O Optimize output file

-Qy Ignored for SVR4 compatibility

-r
-i
--relocateable

Generate relocatable output

-R <file>
--just-symbols <file>

Just link symbols (if directory, same as --rpath)

-s
--strip-all

Strip all symbols

-S
--strip-debug

Strip debugging symbols

-t
--trace

Trace file opens

-T <file>
--script <file>

Read linker script

-u <symbol>
--undefined <symbol>

Start with undefined reference to <symbol>

-Ur Build global constructor/destructor tables

-v
--version

Print version information

-V Print version and emulation information

-x
--discard-all

Discard all local symbols

-X
--discard-locals

Discard temporary local symbols

Table 25. nios-elf-ld Options

Option Description
Altera Corporation 71

Utilities Nios Software Development Reference Manual
-y <symbol>
--trace-symbol <symbol>

Trace mentions of <symbol>

-Y <path> Default search path for Solaris compatibility

-z <keyword> Ignored for Solaris compatibility

-(
--start-group

Start a group

-)
--end-group

End a group

-assert <keyword> Ignored for SunOS compatibility

-Bdynamic
-dy
-call_shared

Link against shared libraries

-Bstatic
-dn
-non_shared
-static

Do not link against shared libraries

-Bsymbolic Bind global references locally

--check-sections Check section addresses for overlaps (default)

--no-check-sections Do not check section addresses for overlaps

--cref Output cross reference table

--defsym <symbol>=<expression> Define a symbol

--demangle Demangle symbol names

--dynamic-linker <program> Set the dynamic linker to use

--embedded-relocs Generate embedded relocs

--errors-to-file <file> Save errors to <file> instead of printing to stderr

-fini <symbol> Call <symbol> at unload-time

--force-exe-suffix Force generation of file with .exe suffix

--gc-sections Remove unused sections (on some targets)

--no-gc-sections Do not remove unused sections (default)

--help Print option help

-init <symbol> Call <symbol> at load-time

-Map <file> Write a map file

--no-demangle Do not demangle symbol names

--no-keep-memory Use less memory and more disk I/O

--no-undefined Allow no undefined symbols

--no-warn-mismatch Do not warn about mismatched input files

--no-whole-archive Turn off --whole-archive

--noinhibit-exec Create an output file even if errors occur

Table 25. nios-elf-ld Options

Option Description
72 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

--oformat <target> Specify target of output file

-qmagic Ignored for Linux compatibility

--relax Relax branches on certain targets

--retain-symbols-file <file> Keep only symbols listed in <file>

-rpath <path> Set runtime shared library search path

-rpath-link <path> Set link time shared library search path

-shared
-Bshareable

Create a shared library

--sort-common Sort common symbols by size

--split-by-file Split output sections for each file

--split-by-reloc <count> Split output sections every <count> relocs

--stats Print memory usage statistics

--task-link <symbol> Do task level linking

--traditional-format Use same format as native linker

-Tbss <address> Set address of .bss section

-Tdata <address> Set address of .data section

-Ttext <address> Set address of .text section

--verbose Output lots of information during link

--version-script <file> Read version information script

--version-exports-section <symbol> Take export symbols list from .exports, using <symbol> as the version

--warn-common Warn about duplicate common symbols

--warn-constructors Warn if global constructors/destructors are seen

--warn-multiple-gp Warn if the multiple GP values are used

--warn-once Warn only once per undefined symbol

--warn-section-align Warn if start of section changes due to alignment

--whole-archive Include all objects from following archives

--wrap <symbol> Use wrapper functions for <symbol>

--mpc860c0 =<words> Modify problematic branches in last <words> (1–10, default 5) words of a
page

Table 25. nios-elf-ld Options

Option Description
Altera Corporation 73

Utilities Nios Software Development Reference Manual
The nios-elf-ld supported targets are:

■ elf32-nios
■ elf32-little
■ elf32-big
■ srec
■ symbolsrec
■ tekhex
■ binary
■ ihex

The nios-elf-ld supported emulations are:

■ elfnios16
■ elfnios32

There are no nios-elf-ld emulation-specific options.

f For more details on using the GNU linker, refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation. In the help window that appears, click Using ld.
74 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

nios-elf-nm nios-elf-nm lists public symbols and their values from object files.

Usage

nios-elf-nm [options] [file...]

Options

Table 26. nios-elf-nm Options

Option Description

-A
-o
--print-file-name

Precede each symbol with the name of the input file where it
was found

-a
--debug-syms

Display debugger-only symbols

-B Same as --format=bsd

-C
--demangle

Decode low-level symbol names into user-level names

-D
--dynamic

Display dynamic symbols rather than the normal symbol

-f <format> Use output format <format> (“bsd”, “sysv”, or “posix”)

-g
--extern-only

Display only external symbols

-n
-v
--numeric-sort

Sort symbols numerically by address, not alphabetically

-p
--no-sort

Do not sort symbols

-P
--portability

Use POSIX.2 standard output format instead of default
format

-s
--print-armap

When listing symbols from archive members, include index

-r
--reverse-sort

Reverse sort order

--size-sort Sort symbols by size

-t <radix>
--radix=<radix>

Use <radix> (“d” for decimal, “o” for octal, or “x” for
hexadecimal) as the radix for printing symbol values

--target=<bfdname> Specify object code format other than default format

-u
--undefined-only

Display only undefined symbols
Altera Corporation 75

Utilities Nios Software Development Reference Manual
Example

nios-elf-nm hello_world.out > hello_world.nm

creates hello_world.nm, which includes a list of all symbols in the
program.

hello_world.out:
000406b0 t CWPOverflowTrapHandler
000405fc t CWPUnderflowTrapHandler
000402d6 T PrivatePrintf
00040244 T RAMLimit
00040ae8 A __bss_start
000408ca T __divsi3
000408fc T __modsi3
00040796 T __mulhi3
00040796 T __mulsi3
00000001 a __nios32__
.
.
.

f For details on GNU nm, refer to the on-line documentation by choosing
Programs > Cygwin > Cygwin Documentation (Windows Start Menu).
In the help window that appears, click Using binutils, then nm.

-l
--line-numbers

For each symbol, use debugging information to find a
filename and line number

-V
--version

Display nm’s version number and exit

--help Display a summary of nm’s options and exit

Table 26. nios-elf-nm Options
76 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

nios-elf-objcopy nios-elf-objcopy converts executable binary files (.out) to S-records,
which are suitable for ROM images and for download images to
embedded systems.

If you use nios-build to generate executable code, nios-elf-objcopy is
invoked automatically.

Usage

nios-elf-objcopy <switches> in-file [out-file]

Options

Table 27. nios-elf-objcopy Options

Option Description

-I <bfdname> Assume input file is in format <bfdname>

-O <bfdname> Create an output file in format <bfdname>

-F <bfdname> Set both input and output format to <bfdname>

--debugging Convert debugging information, if possible

-p Copy modified/access timestamps to output

-j <name> Only copy section <name> into output

-R <name> Remove section <name> from output

-S Remove all symbol and relocation information

-g Remove all debugging symbols

--strip-unneeded Remove all symbols not needed by relocations

-N<name>> Do not copy symbol<name>

-K <name> Only copy symbol <name>

-L <name> Force symbol <name> to be marked as a local

-W <name> Force symbol <name> to be marked as a weak

--weaken Force all global symbols to be marked as weak

-x Remove all non-global symbols

-X s Remove compiler-generated symbols

-i <number> Only copy one out of every <number> bytes

-b <num> Select byte <num> in every interleaved block

--gap-fill <val> Fill gaps between sections with <val>

--pad-to <addr> Pad the last section up to address <addr>

--set-start <addr> Set the start address to <addr>

--change-start <incr> Add <incr> to start address

--change-addresses <incr> Add <incr> to LMA, VMA, and start addresses

--change-section-address <name>{=|+|-}<val> Change LMA and VMA of section <name> by <val>
Altera Corporation 77

Utilities Nios Software Development Reference Manual
f For details on GNU objcopy, refer to the on-line documentation by
choosing Programs > Cygwin > Cygwin Documentation (Windows Start
Menu). In the help window that appears, click Using binutils, then
objcopy.

--change-section-lma <name>{=|+|-}<val> Change LMA of section <name> by <val>

--change-section-vma <name>{=|+|-}<val> Change VMA of section <name> by <val>

--[no-]change-warnings Warn if a named section does not exist

--set-section-flags <name>=<flags> Set section <name>’s properties to <flags>

--add-section <name>=<file> Add section <name> found in <file> to output

--change-leading-char Force output format’s leading character style

--remove-leading-char Remove leading character from global symbols

--redefine-sym <old>=<new> Redefine symbol name <old> to <new>

-v
--verbose

List all object files modified

-V
--version

Display this program’s version number

-h
--help

Display help for this utility

Table 27. nios-elf-objcopy Options

Option Description
78 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

nios-elf-objdump This utility displays information about one or more object files. The
options control which information to display, thus allowing users to see
routine locations or code types produced by the compiler.

Usage

nios-elf-objdump <switches> file(s)

Options

Use at least one switch listed in Table 28. Table 29 lists optional switches.

Table 28. nios-elf-objdump Switches

Switch Description

-a
--archive-headers

Display archive header information

-f
--file-headers

Display contents of the overall file header

-p
--private-headers

Display object format specific file header contents

-h
--[section-]headers

Display contents of the section headers

-x
--all-headers

Display contents of all headers

-d
--disassemble

Display assembler contents of executable sections

-D
--disassemble-all

Display assembler contents of all sections

-S
--source

Intermix source code with disassembly

-s
--full-contents

Display full contents of all sections requested

-g
--debugging

Display debug information in object file

-G
--stabs

Display STABS contents of an ELF format file

-t
--syms

Display contents of the symbol table(s)

-T
--dynamic-syms

Display contents of the dynamic symbol table

-r
--reloc

Display relocation entries in the file
Altera Corporation 79

Utilities Nios Software Development Reference Manual
-R
--dynamic-reloc

Display dynamic relocation entries in the file

-V
--version

Display this program’s version number

-i
--info

List object formats and architectures supported

-H
--help

Display this information

Table 29. nios-elf-objdump Optional Switches

Switch Description

-b <bfdname>
--target=<bfdname>

Specify target object format as <bfdname>

-m <machine>
--architecture <machine>

Specify target architecture as <machine>

-j <name>
--section=<name>

Only display information for section <name>

-M
--disassembler-options <o>

Pass text <o> onto disassembler section

-EB
--endian=big

Assume big endian format when disassembling

-EL
--endian=little

Assume little endian format when disassembling

--file-start-context Include context from start of file (with -S)

-l
--line-numbers

Include line numbers and filenames in output

-C
--demangle

Decode mangled/processed symbol names

-w
--wide

Format output for more than 80 columns

-z
--disassemble-zeroes

Do not skip blocks of zeroes when disassembling

--start-address <address> Start displaying data at <address>

--stop-address <address> Stop displaying data at <address>

--prefix-addresses Print complete address alongside disassembly

--[no-]show-raw-insn Display hex alongside symbolic disassembly

--adjust-vma <offset> Add <offset> to all displayed section addresses

Table 28. nios-elf-objdump Switches

Switch Description
80 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

The nios-elf-objdump supported targets are:

■ elf32-nios
■ elf32-little
■ elf32-big
■ srec
■ symbolsrec
■ tekhex
■ binary
■ ihex

Example

nios-elf-objdump -D hello_world.out > hello_world.objdump

disassembles the object file hello_world.out and creates a disassembly
output file hello_world.objdump:

hello_world.out: file format elf32-nios

Disassembly of section .text:

00040100 <nr_jumptostart>:
 40100: 06 98 pfx %hi(0xc0)
 40102: 40 35 movi %g0,0xa
 40104: 00 98 pfx %hi(0x0)
 40106: 40 6c movhi %g0,0x2
 40108: c0 7f jmp %g0
 4010a: 00 30 nop
 4010c: 4e 69 ext16d %sp,%o2
 4010e: 6f 73 *unknown*
00040110 <main>:
 40110: 17 78 save %sp,0x17
 40112: 4a 98 pfx %hi(0x940)
 40114: 88 35 movi %o0,0xc
 40116: 00 98 pfx %hi(0x0)
 40118: 88 6c movhi %o0,0x4
 4011a: 04 98 pfx %hi(0x80)
 4011c: a1 36 movi %g1,0x15
 4011e: 00 98 pfx %hi(0x0)
 40120: 41 6c movhi %g1,0x2
 40122: e1 7f call %g1
 40124: 00 30 nop
 40126: df 7f ret
 40128: a0 7d restore
 .
 .
 .

f For details on GNU objdump, see the on-line documentation by choosing
Programs > Cygwin > Cygwin Documentation (Windows Start Menu).
In the help window that appears, click Using binutils, then objdump.
Altera Corporation 81

Utilities Nios Software Development Reference Manual
nios-elf-size The nios-elf-size utility analyzes .out, .o, or .a files and produces a report
of code (text), data (data), and uninitialized storage (bss) sizes.

Usage

nios-elf-size [options] [file...]

Options

f For details on GNU size, refer to the on-line documentation by choosing
Programs > Cygwin > Cygwin Documentation (Windows Start Menu).
In the help window that appears, click Using binutils, then size.

Table 30. nios-elf-size Options

Option Description

-A Output from GNU size resembles output from System V
size

-B Output from GNU size resembles output from Berkeley
size

--format <compatibility> Output from GNU size resembles output from
<compatibility> size (“sysv” or “berkeley”)

-d Display section size in decimal

-o Display section size in octal

-x Display section size in hexadecimal

--radix <number> Display section size in <number> (“10” for decimal, “8”
for octal, “16” for hexadecimal)

--target <bfdname> Specify an object code format for objfile as <bfdname>

-V
--version

Display version number information on size itself

--help Display a summary of arguments and options
82 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

nios-run The nios-run utility downloads code and/or data to the Nios
development board with the GERMS monitor running. nios-run is also
used as a terminal I/O program to interact with the GERMS monitor or
any other software running on the Nios development board.

When given a filename as a parameter, nios-run sends characters from the
file to the host communication UART on the Nios development board.
Usually these files are of type .srec with data to write into SRAM, or .flash
with data to burn into flash.

Usage

nios-run [option(s)] [filename]

Options

Example

nios-run -p com2 hello_world.srec

downloads the executable file hello_world.srec to the development board
via COM2.

Table 31. nios-run Options

Option Description

-b <baud-rate> Set the serial port baud rate (default = 115200)

-d Provide additional debugging information during download

-e “<command>” Execute a monitor command before entering terminal mode
(experimental)

-o <seconds> Quit after <seconds> seconds in terminal mode

-p <port-name> Specify serial port (default = COM1:)

-s <millisecs> Specify a per-character delay (useful for reluctant flash)

-t Enter terminal mode without downloading code

-x Exit immediately after downloading code

-z Display timestamp for each line (useful for benchmarking)
Altera Corporation 83

Utilities Nios Software Development Reference Manual
srec2flash srec2flash converts executable code in a .srec file to a .flash file, which can
then be downloaded and burned into flash on the Nios development
board.

At system start-up, the GERMS monitor looks for code in flash memory at
location 0x140000. If user code is detected in flash, GERMS executes the
code. srec2flash takes code in a .srec file targeted for location 0x40100
(SRAM on the development board) and creates a .flash file. The .flash file
is a sequence of GERMS commands that prepare flash to be written, then
burn the contents of the .srec file into flash at location 0x140000.

However, because the executable code is assumed to be executed from
0x40100 in SRAM, some additional pre-processing is required. srec2flash
adds a small routine at the head of the user software. When executed, this
routine copies the user software (and itself) stored in flash at 0x140000 into
SRAM at 0x40100. After code is copied from flash to SRAM, program
execution begins from SRAM.

Usage

srec2flash <srec file> [filename]

Example

srec2flash hello_world.srec

Generates the file hello_world.flash (partial listing follows):
84 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

This file generated by srec2flash, part of
the Nios SDK. This file contains a short
program to run out of flash memory which
copies the main program down to RAM, and
executes it there.
#
Original file: hello_world.srec
#
Loader program
r0
#
Erase flash sector 140000
#
This address is checked by germsMon at startup
#
e140000
#
S219140000009800350098406DC07F00304E696F73089810349044
S2191400156E1134116F08981234926C005A50048074015A500455
S21914002A8174011E0140415E92043012E27EF387003021981009
S21914003F340098106CB2993135115E08981234926C3224D27FA0
S206140054003061
#
Main program
#
r40100-140100
S013000068656C6C6F5F776F726C642E7372656376
S219040100069840350098406CC07F00304E696F7317784A988889
S219040115350098886C0498A1360098416CE17F0030DF7FA07D48
S21904012A17781298D95F1398DA5F1498DB5F1598DC5F1698DD09
S21904013F5F0833169849370098496CCB3302980B050B986135AC
.
.
.

To burn flash on the development board, use the nios-run utility:

nios-run -x hello_world.flash

f For more details on this process, see the Altera white paper Converting
.srec Files to .flash Files for Nios Embedded Processor Applications at
http://www.altera.com/literature/wp/wp_srec_to_flash.pdf.
Altera Corporation 85

http://www.altera.com/literature/wp/wp_srec_to_flash.pdf.

Utilities Nios Software Development Reference Manual
tracelink tracelink associates a Nios object file (generated with nios-elf-ld) and a
trace dump file (generated with the debug core routines described in
“Debug Core” on page 29) to generate an assembly listing of all
instructions traced, including all data accesses, skipped instructions, and
interrupts.

Usage

tracelink objectfile tracedump

Example

nios-run hello_debug.srec > hello_debug.dump

hello_debug sends its trace output to the serial port, which is directed to
the file hello_debug.dump.

tracelink hello_debug.out hello_debug.dump > hello_debug.trace

generates the output:

Reading in object and trace information...100%
Organizing trace stream...................100%
Generating instruction sequence...........100%
Aligning skip information.................100%
Aligning data information.................100%
Generating report.........................100%
86 Altera Corporation

Nios Software Development Reference Manual Utilities

U
tilities

3

hello_debug.trace contains a full trace listing:

.

.

.
 0x4009a br 40090 <main+0x66>
 0x4009c nop
 0x40090 bsr 40010 <do_write>
 0x40092 mov %o0,%i0
 0x40010 save %sp,0x17
 0x40012 mov %l0,%i0
 0x40014 lsli %l0,0x2
 0x40016 pfx %hi(0x10c0)
 0x40018 movi %g1,0x10
 0x4001a pfx %hi(0x0)
 0x4001c movhi %g1,0x4
 0x4001e add %l0,%g1
 0x40020 movi %g1,0x1
 0x40022 lsl %g1,%i0
 0x40024 stp [%l0,0x0],%g1 WRITE 0x4114c -> 0x80000000
 0x40026 ret
 0x40028 restore
 0x40094 inc %i0
 0x40096 cmpi %i0,0x1f
 0x40098 skps cc_gt
SKIPPED 0x4009a br 40090 <main+0x66>
 0x4009c nop
 0x4009e movi %i0,0x0
 0x400a0 bsr 40010 <do_write>
 0x400a2 mov %o0,%i0
 0x40010 save %sp,0x17
 0x40012 mov %l0,%i0

.

.

.

Altera Corporation 87

Utilities Nios Software Development Reference Manual
88 Altera Corporation

Altera Corporation
Appendix

Appendix
Appendix A:
GERMS
Monitor Usage

The GERMS prompt is a plus sign, “+“. Unknown commands are answered
with a question mark, “?“, followed by a new prompt “+”. The examples in
this section assume the Nios development board is configured with the
default Factory hardware image, and the GERMS monitor is running. The
vector table is located at 0x40000 and the program code starts at 0x40100. The
program used is hello_world.c. The vector table can be examined as follows:

+m40000
#00040000: 0A52 0002 0FBA 0002 1014 0002 0A52 0002
#00040010: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040020: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040030: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+

Each time r is pressed, the next memory segment is displayed. For
example, press r five times to display:

#00040040: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040050: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040060: 0A52 0002 08E9 0002 0A52 0002 0A52 0002
#00040070: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+
#00040080: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040090: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400A0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400B0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+
#000400C0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400D0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400E0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400F0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+
#00040100: 984E 3780 9800 6C40 7FC0 3000 694E 736F
#00040110: 7817 9970 3408 9800 6C88 984C 35E1 9800
#00040120: 6C41 7FE1 3000 981A 3708 9800 6C48 7FE8
#00040130: 3000 7FDF 7DA0 0000 7817 9811 5FD8 9811
+
#00040140: 5BC1 7EC1 8004 3000 3438 8011 3000 9811
#00040150: 5BC1 9FFF 37E2 9FFF 6FE2 1041 7EE2 8004
#00040160: 3000 3438 8004 3000 3418 8001 3000 7FDF
#00040170: 7DA0 781C 9811 5FD8 9812 5FD9 9811 5BC1
+

 89

Appendix Nios Software Development Reference Manual
The vector table starts at 0x40000 and ends at 0x400FF. Each four bytes
represent an address for each of the 64 possible interrupts. In the case of
hello_world, no interrupts are set, so the above display is the address of
the routine r_spurious_irq_handler divided by 2. That is,
r_spurious_irq_handler is at 0x414a4. Divided by 2 it is at 0x020a52, seen
as 0x0A52 (lower half-word) and 0x0002 (higher half-word).

The program starts at 0x40100. Following is an excerpt from the start of
hello_world.objdump:

hello_world.out: file format elf32-nios

Disassembly of section .text:

00040100 <nr_jumptostart>:
 40100: 4e 98 pfx %hi(0x9c0)
 40102: 80 37 movi %g0,0x1c
 40104: 00 98 pfx %hi(0x0)
 40106: 40 6c movhi %g0,0x2
 40108: c0 7f jmp %g0
 4010a: 00 30 nop
 4010c: 4e 69 ext16d %sp,%o2
 4010e: 6f 73 usr0 %o7,%i3

00040110 <main>:

#include "nios.h"

int main(void)
 {
 40110: 17 78 save %sp,0x17
 //
 // This will not work without a UART!
 //

 NIOS_GDB_SETUP

 printf ("\n\nHello from Nios.\n\n");
 40112: 70 99 pfx %hi(0x2e00)
 40114: 08 34 movi %o0,0x0

Use the G command to start execution at a certain address. For example,
after hello_world.srec is run, it exits to the GERMS monitor. To run
hello_world again without exiting the monitor:
90 Altera Corporation

Nios Software Development Reference Manual Appendix

Appendix
ref_32_2.1
+
g40100

Hello from Nios.

*
#415B1234
ref_32_2.1
+

To write to a particular peripheral, only the address is required. For
example, by default, the Nios development board’s seven-segment LED is
at address 0x420. Write 0x3649 to display two vertical and three horizontal
lines:

+
m420:3649
+

Hardware Considerations (32-Bit Nios CPU only)

When using the M command to write to memory, the monitor can use
either an ST8 (8-bit store), ST16 (16-bit store), or ST (32-bit store)
instruction. This is useful to know, as ST8 uses one byte enable, ST16 uses
two byte enables, and ST uses four byte enables to write. The following
examples demonstrate writing with each method.

To write a single byte:

+
m50000:30
+
m50000
#00050000: 0030 0000 0000 0000 0000 0000 0000 0000
#00050010: 0000 0000 0000 0000 0000 0000 0000 0000
#00050020: 0000 0000 0000 0000 0000 0000 0000 0000
#00050030: 0000 0000 0000 0000 0000 0000 0000 0000
Altera Corporation 91

Appendix Nios Software Development Reference Manual
To write a single half-word:

+
m50000:1234
+
m50000
#00050000: 1234 0000 0000 0000 0000 0000 0000 0000
#00050010: 0000 0000 0000 0000 0000 0000 0000 0000
#00050020: 0000 0000 0000 0000 0000 0000 0000 0000
#00050030: 0000 0000 0000 0000 0000 0000 0000 0000

To write a full word:

+
m50000:ABCD9876
+
m50000
#00050000: 9876 ABCD 0000 0000 0000 0000 0000 0000
#00050010: 0000 0000 0000 0000 0000 0000 0000 0000
#00050020: 0000 0000 0000 0000 0000 0000 0000 0000
#00050030: 0000 0000 0000 0000 0000 0000 0000 0000
+

In the next example, a new design is manually loaded in the default flash
area, such as hexout2flash does. Assuming the design
my_user_design.hexout is created, start the monitor from the bash shell:

[bash] .../mydir: nr -t
nios-run: Terminal mode (Control-C exits)

+
e180000
+
e190000
+
e1A0000
+
e1B0000
+
r180000
+
<CTRL-C>
92 Altera Corporation

Nios Software Development Reference Manual Appendix

Appendix
The “e” commands erase the different blocks needed from the flash and
the “r” command relocates whatever is downloaded next, starting at that
address. The final step is to send the design:

[bash] .../mydir: nr my_user_design.hexout

Appendix B:
Assembly
Language
Macros

The file nios_macros.s located in the .../inc/ directory provides several
assembly language macros useful for low-level programming and
debugging.

See the Nios 16-Bit Programmer’s Reference Manual or Nios 32-Bit
Programmer’s Reference Manual for details on assembly language
programming.

Table 32. Assembly Language Macros

Macro Description

MOVIP %reg,value Acts similarly to the Nios instruction MOVI, but allows any size constant. It
automatically uses a combination of BGEN, MOVI, MOVHI, and PFX to load the
value into the register. MOVIP uses as few of these instructions as possible.

MOVIP can only be used with defined constants; it generates an error if the
constant is not defined at assembly time.

MOVIA %reg,value Load a native-sized value into the register. The native word size is 16 or 32 bits;
16-bit or 32-bit Nios CPU, respectively. The value need not be defined at
assembly time; the linker fills in the value later.

ADDIP %reg,value Acts similarly to ADDI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

SUBIP %reg,value Acts similarly to SUBI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

CMPIP %reg,value Acts similarly to CMPI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

ANDIP %reg,value Acts similarly to ANDI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

ANDNIP %reg,value Acts similarly to ANDNI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

ORIP %reg,value Acts similarly to ORI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

_BR address Acts similarly to BR, but uses %g7 to load the target address. The target address
is therefore not limited to the short branch range.

_BSR address Acts similarly to BSR, but uses %g7 to load the target address. The target
address is therefore not limited to the short branch range.

nm_print string Prints the quoted string to the default UART. It uses %o0 and %g registers.

nm_println string Like nm_print, but prints the string followed by a carriage return and line feed.
Altera Corporation 93

Appendix Nios Software Development Reference Manual
nm_d_txchar char Expands out to a large block of code that transmits a character to the default
UART without altering any registers or requiring the CWP to move. It does use
stack space.

Because this macro does not affect any registers or the CWP, it is useful for
debugging interrupt handlers and low-level services, such as task switchers.

nm_d_txreg char1,char2,%reg Expands out to a large block of code that transmits the two characters followed
by the register’s hexadecimal value. It prints erroneous values for the stack
pointer register.

Because this macro does not affect any registers or the CWP, it can be useful
for debugging interrupt handlers and low-level services, such as task switchers.

Table 32. Assembly Language Macros

Macro Description
94 Altera Corporation

Altera Corporation
Index

Index
Symbols

__mulhi3 routine 20
__mulsi3 routine 20
__nios_use_constructors__ setting 14
__nios_use_cwpmgr__ setting 14
__nios_use_fast_mul__ setting 17
__nios_use_small_printf__ setting 15
_BR macro 93
_BSR macro 93
_close routine 20
_exit routine 20
_fstat routines 20
_getpid routine 20
_kill routine 20
_read routine 20
_sbrk routine 20
_start routine 20, 21
_write routine 20

A

ADDIP macro 93
ANDIP macro 93
ANDNIP macro 93
Application software, creating and compiling 6
Assembly language macros 93

B

bash 51
Boot process, GERMS 10

C

C runtime support 20
CMPIP macro 93
Code

auto-booting transition 7

debugging 7
executable, downloading 7

CPU
core size 2
data path 3

Current window pointer. See CWP Manager.
CWP Manager 23

D

Data path, CPU 3
Data structures

DMA 34
PIO 39
SPI 41
Timer 43
UART 45

Debug core peripheral
interrupt 30
register access 30
registers 29
routines 31
trace data 30

Debugging code 7
Development flow 2
DMA peripheral

data structure 34
registers 34
routines 35

E

Execution speed, software 2

F

Flash memory
booting from 11
saving to 6
 95

Index Nios Software Development Reference Manual
G

General-purpose system routines 24
GERMS monitor 8–11

boot process 10
building processor 6
commands 9
usage examples 89

GNUPro utilities 51

H

Hardware acceleration 2
hexout2flash utility 51, 52

I

inc directory 12
Include directory 12
isatty routine 20

L

lib directory 16
libnios16.a library 19
libnios32.a library 19
Library

directory 16
routines 19

M

M setting 18
Macros

_BR 93
_BSR 93
ADDIP 93
ANDIP 93
ANDNIP 93
CMPIP 93
MOVIA 93
MOVIP 93
nm_d_txchar 94
nm_d_txreg 94
nm_print 93
nm_println 93
ORIP 93

SUBIP 93
Makefile settings 17

__nios_use_constructors__ 14
__nios_use_cwpmgr__ 14
__nios_use_fast_mul__ 17
__nios_use_small_printf__ 15
M 18
NIOS_SYSTEM_NAME 18
NIOS_USE_MSTEP 17
NIOS_USE_MULTIPLY 18

Memory
model 1
off-chip 4
on-chip 4

MOVIA macro 93
MOVIP macro 93
MSTEP multiplier 4
MUL multiplier 4
Multipliers 4

N

Nios
library routines 19
program structure 19
utilities 51–87

nios_bash utility 51, 53
nios_csh utility 51, 57
NIOS_SYSTEM_NAME setting 18
NIOS_USE_MSTEP setting 17
NIOS_USE_MULTIPLY setting 18
nios-build utility 51, 54
nios-convert utility 51, 56
nios-elf-as utility 51, 58
nios-elf-gcc utility 51, 60
nios-elf-gdb utility 51, 64
nios-elf-gprof utility 51, 66
nios-elf-ld utility 51, 70
nios-elf-nm utility 51, 75
nios-elf-objcopy utility 51, 77
nios-elf-objdump utility 51, 79
nios-elf-size utility 51, 82
nios-run utility 51, 83
nm_d_txchar macro 94
nm_d_txreg macro 94
nm_debug_get_reg routine 27, 32
96 Altera Corporation

Nios Software Development Reference Manual Index

Index
nm_debug_set_bp0 routine 27, 33
nm_debug_set_bp1 routine 27, 33
nm_debug_set_reg routine 27, 33
nm_print macro 93
nm_println macro 93
nr_debug_dump_trace routine 27, 31
nr_debug_isr_continue routine 27, 32
nr_debug_isr_halt routine 27, 32
nr_debug_start routine 27, 31
nr_debug_stop routine 27, 31
nr_delay routine 24
nr_dma_copy_1_to_1 routine 27, 35
nr_dma_copy_1_to_range routine 27, 36
nr_dma_copy_range_to_1 routine 27, 38
nr_dma_copy_range_to_range routine 27, 37
nr_installcwpmanager routine 24
nr_installuserisr routine 22
nr_installuserisr2 routine 23
nr_pio_showhex routine 27, 40
nr_spi_rxchar routine 27, 42
nr_spi_txchar routine 27, 42
nr_timer_milliseconds routine 28, 44
nr_uart_rxchar routine 28, 46
nr_uart_txchar routine 28, 46
nr_uart_txcr routine 28, 48
nr_uart_txhex routine 28, 48
nr_uart_txhex16 routine 28, 48
nr_uart_txhex32 routine 49
nr_uart_txstring routine 28, 49
nr_zerorange routine 25

O

Off-chip
memory 4
shared bus 5

On-chip memory 4
ORIP macro 93

P

Peripherals 5
Debug core 29
DMA 34
Off-chip shared bus 5
PIO 39

register maps 12
routines 27–49
SPI 41
Timer 43
UART 45
user defined interface 5

PIO peripheral
data structure 39
registers 39
routines 40

printf routine 25
Processor

building 5
saving configuration 6

Program structure, Nios 19

R

Register file, size considerations 3
Registers

Debug core 29
DMA 34
PIO 39
SPI 41
Timer 43
UART 45

Routines
__mulhi3 20
__mulsi3 20
_close 20
_exit 20
_fstat 20
_getpid 20
_kill 20
_read 20
_sbrk 20
_start 20, 21
_write 20
Debug core 31
DMA 35
general purpose 24
isatty 20
nm_debug_get_reg 27, 32
nm_debug_set_bp0 27, 33
nm_debug_set_bp1 27, 33
nm_debug_set_reg 27, 33
Altera Corporation 97

Index Nios Software Development Reference Manual
nr_debug_dump_trace 31
nr_debug_isr_continue 27, 32
nr_debug_isr_halt 27, 32
nr_debug_start 27
nr_debug_stop 27, 31
nr_debug_trace 27
nr_delay 24
nr_dma_copy_1_to_1 27, 35
nr_dma_copy_1_to_range 27, 36
nr_dma_copy_range_to_1 27, 38
nr_dma_copy_range_to_range 27, 37
nr_installcwpmanager 24
nr_installuserisr 22
nr_installuserisr2 23
nr_pio_showhex 27, 40
nr_spi_rxchar 27, 42
nr_spi_txchar 27, 42
nr_timer_milliseconds 28, 44
nr_uart_rxchar 28, 46
nr_uart_txchar 28, 46
nr_uart_txcr 28, 48
nr_uart_txhex 28, 48
nr_uart_txhex16 28, 48
nr_uart_txhex32 49
nr_uart_txstring 28, 49
nr_zerorange 25
peripherals 27–49
PIO 40
printf 25
rn_debug_start 31
service 21
SPI 42
sprintf 25
Timer 44
UART 45
uart_txchar32 28

Runtime support, C 20

S

SDK 1, 12–18
Software

data structures. See Data structures.
execution speed 2
routines. See Routines.

SOPC design considerations 1

SPI peripheral
data structure 41
registers 41
routines 42

sprintf routine 25
srec2flash utility 11, 51, 84
SUBIP macro 93
System-level services 21

T

Timer peripheral
data structure 43
registers 43
routines 44

tracelink utility 51, 86

U

UART peripheral
data structure 45
registers 45
routines 45

uart_txchar32 routine 28
User defined interface 5
Utilities 51–87

hexout2flash 51, 52
nios_bash 51, 53
nios_csh 51, 57
nios_elf-as 51, 58
nios-build 51, 54
nios-convert 51, 56
nios-elf-gcc 51, 60
nios-elf-gdb 51, 64
nios-elf-gprof 51, 66
nios-elf-ld 51, 70
nios-elf-nm 51, 75
nios-elf-objcopy 51, 77
nios-elf-objdump 51, 79
nios-elf-size 51, 82
nios-run 51, 83
srec2flash 51, 84
tracelink 51, 86
98 Altera Corporation

	About this Manual
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	Overview
	Project Considerations
	Development Flow
	Step 1: Define the Processor
	Step 2: Build the Processor
	Step 3: Save the Processor Configuration to FLASH
	Step 4:Create and Compile the Application Software
	Step 5: Download the Executable Code to the Development Board
	Step 6: Debug the Code
	Step 7: Transition to Auto-Booting Code
	Step 8: Transition Design From Nios Development Board to Target Hardware

	GERMS Monitor
	Monitor Commands
	GERMS Boot Process for the Default 32-Bit Nios Design
	Booting From Flash Memory

	SDK Tree Overview
	The Include (“inc”) Directory
	nios.h (and nios.s)
	nios_macros.s

	The Library (“lib”) Directory
	__nios_use_fast_mul__
	NIOS_USE_MSTEP
	NIOS_USE_MULTIPLY
	NIOS_SYSTEM_NAME
	M

	Nios Program Structure
	Nios Library Routines
	C Runtime Support
	_start

	System-Level Services
	Interrupt Service Routine Handler
	CWP Manager
	General-Purpose System Routines

	High-Level C Support

	Routines
	Nios Peripheral Routines
	Debug Core
	Debug Core Register Access
	Debug Core Trace Data
	Debug Core Interrupt
	Debug Core Software Routines and Macros
	nr_debug_start
	nr_debug_stop
	nr_debug_dump_trace
	nr_debug_isr_halt
	nr_debug_isr_continue
	nm_debug_get_reg
	nm_debug_set_reg
	nm_debug_set_bp0 and nm_debug_set_bp1

	DMA
	DMA Software Data Structure
	DMA Software Routines
	nr_dma_copy_1_to_1
	nr_dma_copy_1_to_range
	nr_dma_copy_range_to_range
	nr_dma_copy_range_to_1

	PIO
	PIO Software Data Structure
	Example: Direct access to PIO

	PIO Software Routine: nr_pio_showhex
	Syntax
	Parameter
	Example

	SPI
	SPI Software Data Structure
	SPI Software Routines
	nr_spi_rxchar
	nr_spi_txchar

	Timer
	Timer Software Data Structure
	Example: Direct access to Timer

	Timer Software Routine: nr_timer_milliseconds

	UART
	UART Software Data Structure
	UART Software Routines
	nr_uart_rxchar
	nr_uart_txchar
	nr_uart_txcr
	nr_uart_txhex
	nr_uart_txhex16
	nr_uart_txhex32
	nr_uart_txstring

	Utilities
	Nios Software Development Utilities
	hexout2flash
	Usage
	Options
	Example

	nios_bash
	Usage

	nios-build
	Usage
	Options
	Example

	nios-convert
	Usage
	Options
	Example

	nios_csh
	Usage
	Example

	nios-elf-as
	Usage
	Options

	nios-elf-gcc
	Usage
	Options

	nios-elf-gdb
	Usage
	Options

	nios-elf-gprof
	Usage
	Options
	Example
	Advanced Usage

	nios-elf-ld
	Usage
	Options

	nios-elf-nm
	Usage
	Options
	Example

	nios-elf-objcopy
	Usage
	Options

	nios-elf-objdump
	Usage
	Options
	Example

	nios-elf-size
	Usage
	Options

	nios-run
	Usage
	Options
	Example

	srec2flash
	Usage
	Example

	tracelink
	Usage
	Example

	Appendix
	Appendix A: GERMS Monitor Usage
	Hardware Considerations (32�Bit Nios CPU only)

	Appendix B: Assembly Language Macros

	Index

