Nios’

Nios Embedded Processor

Software Development Reference Manual

ALTERAW

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000

http://www.altera.com

<

EXCALIBUR"

Document Version: 2.2
Document Date: July 2002

http://www.altera.com

Copyright Nios Custom Instructions Tutorial

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor

products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make nsal
changes to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

LS. EN ISO 9001

ii Altera Corporation

MNL-NIOSPROG-2.2

About this Manual
A I:l /| D

How to Find
Information

Altera Corporation

This document provides information for programmers developing
software for the Nios® embedded soft core processor. Primary focus is
given to code written in the C programming language; however, several
sections discuss the use of assembly code as well.

The terms Nios processor or Nios embedded processor are used when
referring to the Altera® soft core microprocessor in a general or abstract

context.

The term Nios CPU is used when referring to the specific block of logic, in
whole or part, that implements the Nios processor architecture.

Table 1 shows the reference manual revision history.

Table 1. Revision History

Date Description

July 2002 Changes to nr_debug_dump_trace, nr_debug_isr_halt,
nr_debug_isr_continue, and nios-elf-gdb. Updated PDF - version
2.2

April 2002 Updated PDF - version 2.1

January 2002 | Minor amendments. Added DMA and Debug core routines,
nios-elf-gprof and tracelink utilities.

March 2001 | Nios Embedded Processor Software Development Reference
Manual - printed

m Adobe Acrobat’s Find feature lets you to search the contents of a PDF
file. Click the binoculars toolbar icon to open the Find dialog box.

® Bookmarks serve as an additional table of contents.

m Thumbnail icons, which provide miniature previews of each page,
provide a link to the pages.

® Numerous links, shown in green text, allow you to jump to related
information.

About this Manual

Nios Software Development Reference Manual

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http:/ /www .altera.com.

For technical support on this product, go to
http:/ /www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Table 2. How to Contact Altera

Information Type

USA & Canada

All Other Locations

Product literature

http://www.altera.com

http://www.altera.com

Altera literature services

lit_req@altera.com (1)

lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753

(408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Technical support

(800) 800-EPLD (3753)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

http://www.altera.com/mysupport/

http://www.altera.com/mysupport/

FTP site

ftp.altera.com

ftp.altera.com

Note

(1) You can also contact your local Altera sales office or sales representative.

Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
ftp.altera.com
ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com
http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/

Nios Software Development Reference Manual

About this Manual

Typographic
Conventions

The Nios Embedded Processor Software Development Reference Manual
uses the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fyax, \Quartusll directory, d: drive, chiptrip.gdf file.

Bold italic type

Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type

Internal timing parameters and variables are shown in italic type. Examples: tp|a, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of Quartus Il Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster’ Download Cable.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: dat al,tdi,
i nput . Active-low signals are denoted by suffix n, such as r eset n.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\ quartusl I\ gdesi gns\tutorial\chiptrip.gdf.Also, sections
of an actual file, such as a Report File, references to parts of files (such as the AHDL
keyword SUBDESI GN), as well as logic function names (such as TRI) are shown in
Courier.

1.,2,3.,anda,b,c.,..

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

[] Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

1= The hand points to information that requires special attention.

“ The angled arrow indicates you should press the Enter key.

e The feet direct you to more information on a particular topic.

Altera Corporation

Notes:

A I:I - — A Contents

ADOUt thiS IMANUAL ..o iii
How to Find Information
How to Contact Altera
Typographic Conventions

OVEIVIEWoovvrveccccccccccee
Project Considerations

Development FIOW ... s
GERMS MONIEOT .tvtiiiieeeiee ettt ettt e e eae e et e eave e eaa s e eaaeeeteeeeseeeasseeesseeeteeeeseeeasssenssaennns
Monitor Commandscccceveeveeueeerieireeie e
GERMS Boot Process for the Default 32-Bit Nios Design
Booting From Flash Memoryccccocvviiiiiiiiiiininiicicnn,
SDK TTEE OVEIVIEW ...vveuviiiiieiiieieeerieetee et eeteeeteeteeseetseseeseesseesseeteessesssesssessaesssessaasseessesseesseeaeesssens
The Include (“INC”) DITECLOTY ...vvuiuiveiiiceieiecceie e

The Library (“lib”) Directory
Nios Program Structure
Nios Library Routines

C RUNtIMe SUPPOTIL «.ooeiiiiiiiiicic e

System-Level SErvices ..o
High-Level C SUPPOT ...coouiiiiiiiiiiiieii s

BROURINESoooo oo
Nios Peripheral Routines

Debug Corecccooovvviviiicieicne

Debug Core Register Access

Debug Core Trace Dataccociuiiiiiiiiiiiiiiicccc s 30

Debug Core Interrupt

Debug Core Software Routines and Macroscccooeeiveieiiicieieniiieesceeeees 31

DIMA oottt ettt ettt e tet ettt e eae ettt e entententert e tenteat e et e naetears 34

Altera Corporation vii

Contents Nios Software Development Reference Manual

Timer Software Data SITUCTUTEc..ocviiviiieeie ettt et aeenes
Timer Software Routine: nr_timer_milliseconds ...
L8N £ OSSR TRRUSRRNY
UART Software Data STUCHUIEc.cceoieiierieeeieecee ettt e et ee s easesa e sseaseeaeas
UART SOftWare ROULINESccoevvevieiireneieeeeteetireete et ere e eteeseeseeesesesse et eesenseereereesseseersensens

UBITIEEES ..o
Nios Software Development Utilities
hexout2flashccooeeveviiieiieceeeeeeee

USAZE wvveciet et
Options
Example
THOS_DASH .ttt et ettt ettt a e eb e e reer e e ettt ere e te b aareereeaeeteens
USAZE vttt
TUHOSDUILA ettt ettt et e et e eteeeteeeae e aeeteenteeseeeaeereeneeenneenes
USAZE wvveeciet ettt
Options
Example
nios-convert
Usage
Options
Example
TUHOS_CSIL ettt et e te ettt e te e et e e et e et e et e e tteeateaeeneenneeans
USAZE ettt
Example
nios-elf-as
Usage
Options
NIOS-EIf-ZCC ottt
Usage
OPLIONS e
NIOS-€If-ZAD ..o s
USAZE wvveecietcietet e
OPLIONS e
nios-elf-gprof ...
USAZE weveeceet et
OPLIONS .o
Examplecccccoceeee.
Advanced Usage
nios-elf-Idccoeveeveerennns
USAZE ettt
Options
nios-elf-nm
Usage
Options
Example

viii Altera Corporation

Nios Software Development Reference Manual Contents

nios-elf-objcopy
Usage
OPHIONS e
NIOS-€If-ODJAUMP ..o s 79
Usage
OPLIONS e 79
EXAMPIE .o 81
nios-elf-size
USAZE ettt
Options ...
LN TS B o OSSOSO
USAZE ettt
Options
Example
srec2flash s
USAZE vttt bt
Example
tracelink
Usage
Example

APPBNUIX ... 89
Appendix A: GERMS MONItor USAZEcccvvvueiriiniiiiiiiiieiisicisieeccic s 89
Hardware Considerations (32-Bit Nios CPU only)cccoovviciniiiiicniciciccecce 91

Appendix B: Assembly Language Macrosccccccviiiiiiiiniiiniiiiiiiiiinsisiscsiscsesescnees 93

Altera Corporation iX

Contents Nios Software Development Reference Manual

X Altera Corporation

A I:I-{:D A) Overview

The Nios embedded processor is a soft core CPU optimized for
programmable logic and system-on-a-programmable-chip (SOPC)
designs. SOPC designs are created using the MegaWizard® Plug-In
Manager included in the Quartus® II development software. When the
SOPC Builder generates a design, several results occur:

1. The system memory map is checked for consistency. Peripheral
addresses and interrupt priorities are verified to be unique, and fall
within the range of valid entries for the CPU. If not, appropriate
errors are reported and corrections must be made before continuing.

2. A custom software development kit (SDK) is generated for the new
Nios system. The SDK consists of a compiled library of software
routines for the SOPC design, a Makefile for rebuilding the library,
and C header files containing structures for each peripheral.

3. An HDL that describes the custom SOPC Module is generated. This
HDL is (optionally) synthesized into a single netlist, which can then
be integrated as a component in a larger system.

This document covers the SDK generated in step 2 above. All directories
and files mentioned are assumed to be part of the SDK unless otherwise
specified.

Proiect Many design scenarios are possible in Nios processor-based systems.
. . Before beginning development, it is helpful to make some decisions based
Considerations on application requirements. Consider the following issues before starting
the SOPC design:

® Memory Model
Application code can reside in on-chip RAM or ROM, in external
memory devices, or both. The amount of available on-chip memory
depends on the Altera programmable logic device (PLD). When
targeting a device with a small amount of on-chip memory (that is,
1 to 20 Kbyte), assembly code may require hand optimization to
maintain a small memory footprint.

Off-chip devices may be added to increase the addressable memory

space, up to a maximum of 4 Gbytes. Consider memory access time
and board layout.

Altera Corporation 1

Overview

Nios Software Development Reference Manual

® CPU Core Size
The Nios CPU can be configured with a variety of options that affect
the amount of logic and memory resources required to implement the
SOPC module, including the CPU, peripherals and bus logic. These
options allow the designer to make swaps between CPU size (that is,
cost) and performance.

The Nios CPU allows 32-bit and 16-bit configurations. The 16-bit CPU
consumes fewer logic elements (LEs, a unit of logic resources) and
executes faster for software that does not require 32-bit operations.
Regardless of data path width, the 32-bit Nios CPU can restrict the
width of the address bus to conserve LEs. For example, if 4 MByte of
address space is required, the address bus can be restricted to 22 bits
wide.

m Software Execution Speed and Hardware Acceleration
All options affecting the Nios CPU’s configuration affect the CPU’s
performance in some respect. Many options offer a dramatic
improvement in code execution time for a moderate trade-off in the
CPU core size. Consider these cases:

— Software operating on 32-bit data executes more efficiently on
the 32-bit Nios CPU.

- Instructions and data can usually be fetched from on-chip
memory with less latency than off-chip memory.

— The 32-bit Nios CPU offers two hardware-accelerated multiply
instructions, which achieve up to ten times the performance of a
software-only implementation.

— Custom instructions can be added to the Nios instruction set.
Custom instructions replace a complex sequence of standard
instructions with a fast hardware implementation. Iterative,
arithmetic algorithms can achieve greater performance by
implementing the inner loop in hardware.

Development Flow

The following outline describes a typical development flow used when
creating a Nios processor-based design from scratch. It is assumed initial
development is accomplished using the development board and software
tools included in the Nios development kit.

Developing applications using the Nios embedded processor is slightly
different than that of traditional processors, since the designer can
configure the processor architecture and specify the peripheral content.
That is, a designer can build a microcontroller according to system design
requirements, as opposed to selecting a pre-built microcontroller with a
fixed set of peripherals, on-chip memory, and external interfaces.

Altera Corporation

Nios Software Development Reference Manual Overview

The Nios development board included in the kit comes with a 32-bit
reference design (processor, on-chip memory with monitor, and
peripherals), and application code pre-loaded in on-board flash memory.
This reference design helps you quickly familiarize yourself with the
development tools prior to starting your custom design (see the Nios
Tutorial). If possible, begin your software design using the Nios
development board as your target hardware platform.

Step 1: Define the Processor

Based on your system needs, decide the following;:

CPU data path

Does your application require a 32-bit or 16-bit data path? If a 32-bit data
path is not needed, a 16-bit data path generates a smaller, faster CPU core.

Data Path LEs Used Address Range
16-bits 900 64 K
32-bits 1250 4GB

Register File Size

Specify the size of the Nios CPU’s internal register file to suit the system
requirements. Valid configurations are 128, 256, or 512 registers. The
width of each register is the width of the CPU data path. A larger register
file consumes more on-chip memory resources.

The Nios processor implements a windowed register file. 32 registers are
visible to the CPU at any given time. A window pointer into the register
file makes the register file behave like a stack. This improves performance
of subroutine calls by eliminating the need to load and store processor
context and subroutine variables to slow external memory devices.

Altera Corporation 3

Overview

Nios Software Development Reference Manual

Multiplier

If your code performs few multiplication operations, does not contain
time critical multiplication, or you want to make the CPU core as small as
possible, use the software math libraries included with the C compiler. On
the other hand, if your code performs numerous multiplication operations
or must be optimized for speed, choose one of the dedicated hardware
multipliers (MSTEP or MUL).

Table 1. Multiplication Options

Option Additional Clock Cycles Clock Cycles
LEs Used 16x16>32 32x32>32

None (software) 0 80 250

MSTEP +20 18 80

MUL +400 2 16

On-Chip Memory

Determine how much on-chip ROM and RAM your system requires. The
Nios processor uses embedded system blocks (ESBs) for on-chip memory.
There are practical limits to the number of ESBs used for on-chip memory
(see the Altera Device Data Book for details on the number of ESBs
available in particular devices). The SOPC Builder imposes a maximum
limit of 20 Kbytes per on-chip memory device.

Off-Chip Memory

Interfaces to off-chip memory are provided for flash memory, SRAM,
SSRAM, and SDRAM. Any user-defined interface may be created to
connect other off-chip memory devices. The GERMS monitor included in
the development kit contains software routines for writing to and erasing
Advanced Micro Devices (AMD) flash devices. See “GERMS Monitor” on
page 8 for details.

Altera Corporation

Nios Software Development Reference Manual Overview

Altera Corporation

Peripherals

Decide the type and number of peripherals to connect to the Nios
processor. A number of peripherals, listed in Table 2, are included with
the Nios development kit. You can also create interfaces to off-chip or
custom on-chip peripherals using either the parallel input/output (PIO)
peripheral or user-defined interface.

Table 2. Nios Peripherals

Peripheral Name Description
DMA Direct memory access: enables high-speed data transfer
PIO 1- to 32-bit parallel input/output and edge capture
SDRAM Controller Interface to synchronous dynamic random-access

memory (SDRAM)

SPI Serial peripheral interface, 3-wire, master/slave
Timer 32-hit general-purpose timer
UART Universal asynchronous receiver/transmitter
User-defined interface | Custom interface to on-chip and off-chip peripherals
Off-chip shared bus Shared interface to off-chip peripherals and memory

Step 2: Build the Processor

Using the Quartus II development software and the MegaWizard Plug-In
Manager, generate a custom processor system based on the choices you
made in Step 1. As you build the processor, you will:

®m Configure the CPU hardware options, including data path width
(32 or 16 bits), multiplier acceleration, and custom instruction usage

®m Add required peripherals and configure peripheral hardware
options

m Specify the processor boot address

®m Assign peripheral memory addresses and alignment

B Assign interrupt priorities for peripherals and external interfaces as
needed

m Specify peripheral setup and hold requirements as needed

B Assign peripheral and memory wait states as needed

m Enable dynamic bus-sizing to narrow memory or peripheral
interfaces as needed

m Specify files containing instruction or data memory to initialize on-
chip ROM and/or RAM

Overview

Nios Software Development Reference Manual

Once the Nios system is created, it may optionally be combined with other
user-defined logic. The top-level design must be synthesized and fit into
an Altera device using the Quartus II software. Quartus II outputs a
device configuration file of type sof or hexout, which must be
downloaded to the development board. You can use the Quartus I
software and the ByteBlaster MV™ download cable to configure the
Altera device directly from a host PC. Another option is to burn the device
configuration file into on-board flash, and then reset the board.

The GERMS monitor program included in the Nios development kit
allows you to run executable code, read from and write to memory,
download blocks of code (or data) to memory, and erase flash. See
“GERMS Monitor” on page 8 for details. By assigning the GERMS monitor
to the processor boot address (typically on-chip ROM), you can
immediately begin code development, download, and debug.

See the Nios Tutorial for instructions on creating a Nios processor-based
SOPC design.

Step 3: Save the Processor Configuration to FLASH

The Altera PLD that implements the Nios CPU and other logic is volatile
and therefore must be configured each time the board is reset by pushing
the RESET button (SW2) or by cycling power. This configuration data (the
hardware design) is stored in on-board flash. The development board
contains logic that supports a dual configuration scheme as follows:

By default, the APEX™ device is configured from a “User” section of flash
memory (address range 0x180000—-0x1BFFFF). If the APEX device fails
to configure due to corrupt or empty User section, it is automatically
configured from the “Factory” section of flash memory (address range
0x1C0000—-0x1FFFFF). When jumper JP2 is shorted and the RESET
button is pressed, the APEX device is forced to configure from the Factory
section of flash memory.

During development, it is recommended you always store a new design
to the User section of flash memory. This way, if a hardware bug occurs
you can reconfigure the APEX device with the known good reference
design stored in the Factory section of flash memory. Altera loads the
factory section of flash memory with a 32-bit Nios system design. See
“hexout2flash” on page 52 for details on downloading device
configuration files to flash memory.

Step 4:Create and Compile the Application Software

Using a text editor (xemacs and vi editors are included with Cygwin),
write the application source code in C/C++ or assembly (.c or .s).

Altera Corporation

Nios Software Development Reference Manual Overview

Altera Corporation

Compile your source code into executable code using the nios-build
utility or a make file. The resultant binary code is stored in S-record format
(.srec).

For small- to medium-sized software projects, use nios-build to generate
executable code. See “nios-build” on page 54 for details.

For large projects, use hand-crafted make files. For details on using make,
see the online GNU documentation by choosing Programs > Cygwin >
Cygwin Documentation (Windows Start Menu). In the help window that
appears, click Using make.

Step 5: Download the Executable Code to the Development Board

Use nios-run to download and run the application on the development
board. See “nios-run” on page 83 for details.

Step 6: Debug the Code

If you use printf() to debug your code, messages are sent to the STDIO
(such as UART). The nios-run utility acts as a dumb terminal to display
these messages on your development system terminal.

If more sophisticated debugging is called for, rebuild the code with the
compiler debugging option set ON, then use the GNU debugger (GDB) or
other integrated development environment (IDE) to step through the
code, examine memory and register contents, and so on. See “nios-elf-
gdb” on page 64 for details.

Step 7: Transition to Auto-Booting Code

Once the application code is sufficiently debugged, you may wish to store
the executable code on the development board. The Nios CPU then
automatically executes the application upon reset. The options for storing
nonvolatile code on the board are:

Store Code in On-Chip Memory

To store program data in on-chip ROM or RAM, specify a file to initialize
the memory. (See “Step 2: Build the Processor” on page 5.) In this case, you
remove the GERMS monitor completely and replace it with your
application code.

Overview

Nios Software Development Reference Manual

GERMS
Monitor

Store Code in Off-Chip Memory

Store the program in flash memory so the GERMS monitor automatically
executes it after initialization. Use srec2flash to convert the executable
code in .srec format to a .flash format that can be easily burned into the
on-board flash. srec2flash also adds a software routine that copies the
executable code from flash memory to SRAM at start time. See
“srec2flash” on page 84 for details.

or

Remove the GERMS monitor entirely and change the Nios CPU reset
address to point to the program in flash memory. Use srec2flash to add a
routine that copies the executable code from flash memory to SRAM at
start time.

Step 8: Transition Design From Nios Development Board to Target
Hardware

If possible, continue using the GERMS monitor to download code to RAM
on the target hardware. Iteratively compiling and downloading new
software without burning a new ROM or recompiling the hardware
design is quite useful.

The GERMS monitor is a simple monitor program that provides basic
development facilities for the Nios development board, and can also be
used in an end system. The GERMS monitor is included in the default
design stored in flash memory of the development board. On power-up,
the GERMS monitor is the first code to execute, and it controls the boot
process. Once booted, it provides a way to read from and write to the on-
board SRAM or flash memories.

“GERMS” is a mnemonic for the minimal command set of the monitor
program included in the Nios development kit:

Go (run a program)
Erase flash

Relocate next download
Memory set and dump
Send S-records

Send I-Hex records

Tz mmO

For details on GERMS monitor usage, see “Appendix A: GERMS Monitor
Usage” on page 89.

Altera Corporation

Nios Software Development Reference Manual

Overview

Monitor Commands

When the monitor is running, it is always waiting for commands. The user
sends commands as text characters to a “host communication UART”
when building the Nios hardware. Commands consist of a letter followed
by an address, or two addresses separated by a hyphen. The M command
contains an address followed by a colon, followed by data to write.

Commands are executed as they are typed. For example, if you write to
memory, each word is stored as soon as it is entered. GERMS does not
recognize backspace or delete. If you type a mistaken character, press the
Escape key to restart the monitor.

All numbers and addresses entered into the monitor are in hexadecimal.

Table 3. GERMS Monitor Commands

Syntax Example Description

G<base address> G40000 GO—Execute a CALL instruction to the specified
address

E<base address> E180000 Erase flash memory. If the address is within the range
of the “flash” ROM, the sector containing that address
is erased.

R <offset> R1C0000 Relocate command. Specifies the offset for the next

R<from address>-<to address> R0O-180000 downloaded S-record or I-Hex. When two parameters
are provided, the offset is the <from address>
subtracted from the <to address>. See “Appendix A:
GERMS Monitor Usage” on page 89 for an example.

M<address> M50000 Display memory starting from the address

M<address>-<address> M40000-40100

Display arange of memory. Press + again to show the
same number of bytes, starting where the last M
command ended.

M<address>:<value> <value>... M50000:1 2 3 4

Write successive 16-bit words to memory until the end
of line.

M<address>-<address>:<value> | M50000-50100:AA55

Fill a range of memory with a 16-bit word.

“ -

Display the next 64 bytes of memory.

S<S-record data> S$21840000...

Write S-record to next memory location.

:<l-hex record data> :80000004...

Write I-hex record to next memory location.

Escape key -

Restart the monitor.

Altera Corporation

Overview

Nios Software Development Reference Manual

10

GERMS Boot Process for the Default 32-Bit Nios Design

This section describes the boot process used by the GERMS monitor
running on the “Factory” APEX design that ships on the Nios
development board. Custom SOPC designs are not required to use
GERMS, but probably perform many of the same operations to prepare
the system for software execution.

The monitor is located at address zero, 0x0000, in the Nios development
board default configuration.

There are several ways the monitor may come to be executed. When the
Altera PLD is configured with the default Factory design, execution
begins at address zero, which is the monitor. Later, if any unexpected
TRAP or interrupt occurs for which the vector table is not initialized, the
monitor is executed.

When the monitor starts running, it performs the system initialization:
1. Disables interrupts so that interrupt requests from the UART, Timer,
switch PIO, and other peripherals do not interrupt the initialization

process.

2. Sets current window pointer (CWP) to HI_LIMIT to initialize the
register file window.

3. Sets interrupt priority (IPRI) to 63, so that when interrupts are re-
enabled, all interrupt requests are serviced.

4. Initializes the stack pointer by setting %sp to 0x80000
(nasys_stack_top).

It then looks for code to execute out of flash memory:
5. Examines the two bytes at 0x14000C (nasys_flash + 0x04000C).
6. Examines button 0 on the switch PIO (SW4).

uir
1,

7. If the button is not pressed and the two bytes contain “N” and
the monitor executes a CALL to location 0x140000
(nasys_flash + 0x040000).

Altera Corporation

Nios Software Development Reference Manual Overview

Altera Corporation

If the code is not executed in step 7 or that code returns, then: “

8. Prints an 8-digit version number to STDOUT, of the form
“#vvvvPPPP” followed by a carriage return, where “vvvv”is a
monitor pseudo-version—it is different but not necessarily
consecutive for different builds of the monitor—and PPPP is the
processor version number, as retrieved from processor register
CTL 6.

9. Waits for user commands from STDIN.

Booting From Flash Memory

User software applications can be stored in flash and executed
automatically on system power-up or reset. This is particularly useful
when developing application code targeted for flash memory.

During the boot process, the GERMS monitor checks for the existence of
application software in flash memory (step 5 in “GERMS Boot Process for
the Default 32-Bit Nios Design”). If found, the processor immediately
executes the code. Use the software utility srec2flash to prepare programs
for this style of operation (see “srec2flash” on page 84). srec2flash adds a
piece of code to the beginning of the program that copies the application
code from flash (slow memory) to SRAM (fast memory) and runs from
SRAM.

To return program execution to the GERMS monitor (that is, avoid
running code stored in flash memory):

1. Hold down SW4.

2. Press then release the RESET button (SW2).

3. Release SW4.

For more details on this process, see the Altera white paper Converting

.srec Files to .flash Files for Nios Embedded Processor Applications at
http:/ /www.altera.com/literature/wp /wp_srec_to_flash.pdf.

11

http://www.altera.com/literature/wp/wp_srec_to_flash.pdf.

Overview

Nios Software Development Reference Manual

SDK Tree
Overview

12

The SDK is generated as a subdirectory of your Quartus II (or
MAX+PLUS® 1) project. It is given the name of the SOPC Module (the
Nios system) appended with “_sdk”. For example, the 32-bit Factory
reference design (ref_32_system) directory structure is:

.../ref_32_system_cpu_sdk/
|

+--- inc/
|
+---lib/
|
+--- src/

The Include (“inc”) Directory

[bash] ...inc/: Is -I

total 17

STW-r--T-- 1 niosuser Admi ni st 12413 COct 24 15:01 nios.h
STW-r--1-- 1 niosuser Adm ni st 7088 COct 24 15:01 nios.s
STW-r--T-- 1 niosuser Admi ni st 8998 COct 24 15:01 ni os_nacros.s
STWr--T-- 1 niosuser Admi ni st 688 Oct 24 15:01 pio_l cd16207. h

The SDK include directory, inc, contains several files intended for
inclusion from your application programs. These files define the
peripheral addresses, interrupt priorities, register structures, and other
useful constants and macros. To use these features in a program, include
nios.h in each file if the file is written in C or C++, or nios.s if the file is
written in assembly language.

nios.h (and nios.s)

This file contains register maps for each peripheral in your system.
Additionally, it contains C prototypes for library routines available for
each peripheral.

Altera Corporation

Nios Software Development Reference Manual Overview

For C programs, the register maps are provided as structures. For
example, the Timer peripheral’s structure is:

typedef volatile struct

nt np_timercontrol; // wite/readable, 4 bits
nt np_tinmerperiodl; // wite/readable, 16 bits
nt np_tinerperiodh; // wite/readable, 16 bits

{
int np_timerstatus; // read only, 2 bits (any wite to clear TO
i
i
i
i
i

nt np_tinmersnapl; /1l read only, 16 bits
nt np_tinmersnaph; /1 read only, 16 bits
} np_tinmer;

enum

{

np_tinmerstatus_run_bit
np_timerstatus_to_bit

1, // tinmer is running
0, // timer tined out

np_timercontrol _stop_bit
np_tinmercontrol _start_bit
np_timercontrol _cont_bit
np_timercontrol _ito_bit

/1 stop the tinmer
/1 start the tinmer
/1 continuous node
/1 enable time out interrupt

3,
2,
1,
0,

np_timerstatus_run_nmask
np_tinmerstatus_to_mask

(1<<1), // timer is running
(1<<0), // timer timed out

np_timercontrol _stop_mask
np_timercontrol _start_mask
np_timercontrol _cont_mask
np_timercontrol _ito_mask

}s

(1<<3), // stop the tiner
(1<<2), /I start the tinmer
(1<<1), // continuos node
(1<<0) // enable tineout interrupt

The prefix np_ stands for “Nios peripheral”.

Each register is included as an integer (int) structure field, so software that
uses the structure can be targeted transparently to both 32-bit and 16-bit
Nios processors.

For registers with sub-fields or control bits, additional constants are defined
to reference those fields by both mask and bit number. (Bit numbers are
useful for the Nios assembly language instructions SKP0 and SKP1.)

nios.h and nios.s also provide addresses for all peripherals, interrupt
numbers, and other useful constants. Following is an excerpt:

#define na_tinerl ((np_timer *) 0x00000440)
#define na_tinerl_irq 25
#define na_l ed_pio ((np_pio *) 0x00000460)
#defi ne na_button_pio ((np_pio *) 0x00000470)
#define na_button_pio_irg 27
#defi ne nasys_printf_uart ((np_uart *) 0x00000400)
#defi ne nasys_printf_uart_irq 26

Altera Corporation 13

Overview

Nios Software Development Reference Manual

14

The name na_t i mer 1 is derived from the peripheral’s name “Timer”.
The prefix na_ stands for “Nios address”. It is defined as a number cast
to the type of “np_timer *”. This allows the symbol “na_timerl” to be
treated as a pointer to a timer structure. Following is an example of code
written to access the Timer:

int status = na_tiner1l->np_tinerstatus; /* get status of timerl */

Switches

The following switches are defined in the nios.h file:

#define _ _nios_catch_irqgs__ 1
#define __nios_use_constructors__ 1
#define __nios_use_cwpngr__ 1
#define _ nios_use fast mul 1
#define _ _nios_use_small _printf__ 1

__nios_catch_irqs__

When __nios_catch_irqs__is set to 1, a default interrupt handler is
installed for every interrupt. Changing this setting to 0 saves a small
amount of code space.

__nios_use_constructors__

When __nios_use_constructors__ is set to 1, the Nios library contains
startup code to call any initializing code for statically allocated C++
classes. By default, this is set to 1. Changing this setting to 0 reduces the
compiled software’s code footprint if static initialization of C++ classes is
not needed. This is useful for creating software that requires a small ROM
memory footprint.

__nios_use_cwpmgr__

When __nios_use_cwpmgr__is set to 1, the Nios library contains code for
handling register window underflows. Changing this setting to 0 reduces
the code footprint of the compiled software. Do this only when the code
does not call to a subroutine depth that exceeds the register file size. See
the Nios 16-Bit Programmer’s Reference Manual or Nios 32-Bit
Programmer’s Reference Manual for details on the CWP register and
managing the windowed register file.

Altera Corporation

Nios Software Development Reference Manual Overview

Altera Corporation

__nios_use_fast_ mul__

This setting is defined in the nios.h file but works in conjunction with the
NIOS_USE_MULTIPLY and NIOS_USE_MSTERP settings in
.../lib/Makefile. For details, see “__nios_use_fast_mul__"” on page 17.

__nios_use_small_printf _

The standard printf() routine in the GNU libraries takes about 40 Kbytes
of Nios code. It contains support for the complete ANSI printf()
specification, including floating point numbers. When
__nios_use_small_printf__is set to 1, a more minimal implementation is
linked into the Nios library, which takes about 1 Kbyte of Nios code. This
“small printf” supports only integers and the formats %c, %s, %d, %x, and
%X. This setting is useful for sending debug messages to STDIO (a UART)
without significantly increasing the executable code size.

nios_macros.s

This file includes various useful assembly language macros. See
“Appendix B: Assembly Language Macros” on page 93 for details.

15

Overview Nios Software Development Reference Manual

The Library (“lib”) Directory

[bash] ...l1ib/: Il

total 262

STWr--f-- 1 ni osuser Adni nist 5353 Nov 6 15:02 Makefile

STWr--1-- 1 niosuser Admi ni st 6564 Cct 24 15:01 flash_AMD29LV800. c
STWr--1-- 1 ni osuser Adni ni st 139016 Nov 13 15:59 |ibnios32.a
STWr--1-- 1 ni osuser Adnmi nist 139706 Nov 13 15:59 I|ibni 0s32_debug. a
STWr--T-- 1 ni osuser Admi ni st 711 Cct 24 15:01 ni os_copyrange.s
STWr--r-- 1 niosuser Adni ni st 3133 Cct 24 15:01 nios_cstubs.s
STWTr--T-- 1 ni osuser Admi nist 7932 Cct 24 15: 01 ni os_cwpmanager. s
STWT--T-- 1 ni osuser Admi nist 561 Cct 24 15:01 nios_del ay.s
STW-r--T-- 1 niosuser Adni ni st 11111 Cct 24 15:01 nios_enulator.s
STWr--1-- 1 niosuser Admi ni st 392 Cct 24 15: 01 nios_gdb_standal one. ¢
STWAr--r-- 1 niosuser Adni ni st 27310 Cct 24 15: 02 ni os_gdb_st andal one. srec
STWr--1-- 1 ni osuser Adnmi nist 26151 Cct 24 15: 01 ni os_gdb_stub.c
STWT--T-- 1 ni osuser Admi ni st 1886 Oct 24 15:01 nios_gdb_stub.h
STWr--r-- 1 niosuser Adni ni st 443 Oct 24 15: 01 nios_gdb_stub_io.c
STWTr--T-- 1 ni osuser Admi nist 9815 COct 24 15: 01 nios_gdb_stub_isr.s
STWT--T-- 1 ni osuser Admi ni st 23245 Cct 24 15:01 nios_gerns_nonitor.s
STW-r--T-- 1 ni osuser Adni ni st 7740 Cct 24 15:02 nios_germs_nonitor.s.o
STWr--1-- 1 niosuser Admi ni st 22284 Nov 2 09:44 nios_gprof.c
STW-r--r-- 1 niosuser Adni ni st 7088 Cct 24 15:01 nios_isrmanager.s
STWr--1-- 1 ni osuser Adnmi nist 720 Cct 24 15:01 nios_junptostart.s
STWT--T-- 1 ni osuser Admi ni st 3281 COct 24 15:01 nios_mathl.s
STWr--f-- 1 ni osuser Adni nist 960 Cct 24 15:01 nios_printf.c
STWTr--T-- 1 ni osuser Admi nist 2282 COct 24 15:01 nios_setjnmp.s
STWT--T-- 1 ni osuser Admi ni st 4260 Oct 24 15:01 nios_setup.s
STWr--f-- 1 ni osuser Adni nist 5481 Cct 24 15:01 nios_sprintf.c
STWr--1-- 1 niosuser Admi ni st 764 Cct 24 15: 01 ni os_zerorange.s

dr wxr - Xr - X 2 ni osuser Admi ni st 12288 Nov 13 15:59 obj 32/

drwxr - Xr - x 2 niosuser Admi ni st 12288 Nov 13 15:59 obj 32_debug/
STWT--T-- 1 ni osuser Admi ni st 5859 COct 24 15:01 pio_l cd16207.c
STWr--f-- 1 ni osuser Adni nist 1218 Cct 24 15: 01 pio_showhex.s
STWr--1-- 1 ni osuser Admi nist 2392 Cct 24 15:01 timer_milliseconds.s
STWT--T-- 1 ni osuser Admi ni st 770 Cct 24 15:01 uart_rxchar.s
STW-r--T-- 1 ni osuser Adni ni st 764 Oct 24 15:01 uart_txchar.s
STWr--1-- 1 niosuser Admi ni st 450 Oct 24 15:01 uvart_txcr.s
STW-r--r-- 1 niosuser Adni ni st 901 Cct 24 15:01 uart_txhex.s
STWr--1-- 1 ni osuser Adni nist 794 Cct 24 15:01 uart_txhex16.s
STWr--T-- 1 ni osuser Admi ni st 796 Cct 24 15:01 uart_txhex32.s
STWr--f-- 1 ni osuser Adnmi nist 692 Cct 24 15:01 uart_txstring.s
[bash] ...lib/:

The SDK library directory, lib, contains a Makefile, and archive, source,
and object files for libraries usable by your Nios system.

Some source files are in assembly language, and others are in C. The
archive contains assembled (or compiled) versions of routines from each
file, suitable for linking to your program. See “Routines” on page 27 for
details.

16 Altera Corporation

Nios Software Development Reference Manual Overview

Altera Corporation

The command line tool nios-build uses the libnios32.a library directory
when building for a 32-bit system, or libnios16.a when building for a Nios
16-bit system.

The Makefile contains instructions for rebuilding the archive file. The
beginning of the Makefile contains several settings to enable or disable
various features of the Nios library. Following is an excerpt from a typical
Nios library Makefile:

#

Nios SDK Generated Makefile

2002.01.24 01:19: 30

//d/ niosbuil d/srctree/ Del ta/ SWDev/ bi n/ ni os_r ef erence32. ptf
#

NI OS_USE_MSTEP = 1 # CPU option (shift, test, & add)

NI OS_USE_MULTIPLY = 0 # CPU option (16x16->32)

NI OS_SYSTEM NAME = ni os_system nodul e

M= 32 # Nos 32

You can change each of these settings to customize the Nios library. After
changing a setting, enter make -s al | at the command line to rebuild
the library.

The following sections describe each setting.

__nios_use_fast_ mul__

This variable is defined in the nios.h file but works in conjunction with
NIOS_USE_MULTIPLY and NIOS_USE_MSTEP.

If __nios_use_fast_mul__is set to 0, a standard software multiply routine
which is slow and short, is linked into the Nios library. To instruct the
library to perform integer multiplications with either optional instruction
MUL or MSTEP, set __nios_use_fast_mul__ to 1. When
__nios_use_fast_mul__is set to 1, and both NIOS_USE_MULTIPLY and
NIOS_USE_MSTEP are set to 0, a hand-optimized integer multiplication
routine, which is faster and larger, is linked into the Nios library. See
Table 4 on page 18 for a comparison of the possible settings

NIOS_USE_MSTEP

If NIOS_USE_MSTERP is set to 1, the Nios library overrides the standard
multiplication routine with a faster one that uses the MSTEP instruction.
This is set to 1 automatically if the MSTEP feature is selected in the SOPC
Builder software. Use this setting in conjunction with

__nios_use_fast_ mul__.

17

Overview

Nios Software Development Reference Manual

NIOS_USE_MULTIPLY

If NIOS_USE_MULTIPLY is set to 1, the Nios library overrides the
standard multiplication routine with a faster one that uses the MUL
instruction, which runs even faster than MSTEP multiplication. This is set
to 1 automatically if the MULTIPLY feature is selected in the SOPC
Builder software. Use this setting in conjunction with

__nios_use_fast._ mul__.

Table 4 shows how the above settings work together:

Table 4. Size Versus Speed Multiplication

__nios_use_fast_mul__ | NIOS_USE_MSTEP | NIOS_USE_MULTIPLY Use
Value Value Value
0 Oorl Oorl Slow and short multiplication routine
1 0 0 Fast and large multiplication routine
1 1 0 Routine with MSTEP instructions
1 0 1 Routine with MUL instruction

18

NIOS_SYSTEM_NAME

This is a string with the name of the Nios system.

m

This setting is either 16 or 32, to match the width of the Nios CPU. Also,
nios-build uses this value to set the appropriate compiler and assembler
options when building.

Altera Corporation

Nios Software Development Reference Manual Overview

Nios Program In the typical case of a C program built with nios-build, the memory
Stru Gtu re layout represented in the resultant S-record file is: I -

Table 5. Memory Layout

Address, ascending Contents

nasys_program_mem + 0x00 | A preamble consisting of a JUMP instruction to the
symbol “_start” and the four characters “N”, “i", “0”,
and “s”. This is always at the beginning of the S-
record output file. It comes from the library file
nios_jumptostart.o.

nasys_program_mem + 0x10 | The program’s “main()” is in here, as well as all
other routines, in the order shown below. The
command nios-build passes nios_jumptostart.o
to the GNU linker as its first file and the user
program as its second.

(A higher address) A routine labeled “_start”. This comes from the
library file nios_setup.o. It performs some
initialization, then calls “main()”.

(A higher address) Two routines for handling “register window
underflow” and “register window overflow”
required by the Nios embedded processor to
execute arbitrarily deep calling chains. These
come from the nios_cwpmanager.o library file.

(A higher address) Any other Nios library routines the program
references. The linker extracts only the required
routines from the file libnios32.a and includes
them in the final program.

(A higher address) Any read-only data from the program, such as
strings or numeric constants.

(A higher address) Any static variables in the program.

Nios Libra ry The SDK for your Nios system includes the pre-built library libnios32.a
. (for a 32-bit Nios system) or libnios16.a (for a 16-bit Nios system); either
Routines is referred to here as the Nios library. The routines available vary
depending on the peripherals in the Nios system. This section describes
routines that are always present. Optional peripheral routines are
discussed in “Routines” on page 27.

Altera Corporation 19

Overview

Nios Software Development Reference Manual

C Runtime Support

Before a compiled program is run, certain initializations must take place.
When nios-build is used to compile and link a program, the first routine
executed is “_start”, which performs this initialization, then calls the
“main()” routine. Furthermore, the standard C libraries rely on several
low-level platform-specific routines.

Table 6 lists the low-level C runtime support provided by the Nios library,
always present in the Nios library:

Table 6. C Runtime Support Routines

Routine | Source File Description
_start nios_setup.s |Performs initialization prior to calling main()
_exit nios_cstubs.s |Execute a JMP to nasys_reset_address

_shrk nios_cstubs.s |Increments “RAMLImiIt” by the requested amount and returns its previous value,
unless the new value is within 256 bytes of the current stack pointer, in which case it
returns 0. This is the low-level routine used by malloc() to allocate more heap space.

isatty nios_cstubs.s |Returns “1”, indicating to the C library that there is a tty

_close | nios_cstubs.s |Returns “0”; not used by Nios software without a file system, but necessary to link

_fstat nios_cstubs.s |Returns “0”; not used by Nios software without a file system, but necessary to link

_kill nios_cstubs.s |Returns “0”; not used by Nios software without a file system, but necessary to link
_getpid | nios_cstubs.s |Returns “0”; not used by Nios software without a file system, but necessary to link

_read nios_cstubs.s |Calls nr_uart_rxchar() to read a single character from a UART. The “fd” parameter is
treated as the base address of a UART.

_write | nios_cstubs.s |Calls nr_uart_txchar() to print characters to a UART. The “fd” parameter is treated as
the base address of a UART. This allows the routine fprintf() to print to any UART by
passing a UART address in place of the file handle argument.

__mulsi3! | nios_math1.s |Overrides the standard signed 32-bit multiplication routine in the GNU C library.
__mulhi3! | nios_mathl.s |Overrides the standard unsigned 32-bit multiplication routine in the GNU C library.
Note

()]

This routine is faster than the standard routine, uses the MUL or MSTEP instructions (if present), and does not use

a register window level. It uses more code space than the standard routine.

20

Altera Corporation

Nios Software Development Reference Manual Overview

_Start

The first instructions executed by a Nios CPU upon start-up are the
preamble instructions to jump to _start, followed by the actual _start code
instructions. Before compiled software can run, system initialization must
be performed by the _start routine. The initialization steps are:

1. Initialize the stack pointer to “nasys_stack_top”.

2. Zero program storage between “__bss_start” and “_end”.

3. Setan internal variable named “RAMLimit” to “_end” (malloc
claims memory upwards from here).

4. Optionally install the CWP Manager.
5. Optionally call the C++ static constructors.

6. Execute a CALL to the routine “main()”, which normally is the main
entry point of your C routine.

7. If “main()” returns, ignore its return value and execute a TRAP 0.
This usually results in restarting the monitor.

System-Level Services

The system-level service routines discussed in this section are always
present in the Nios library, and are called automatically unless disabled in
the Makefile.

Interrupt Service Routine Handler

The Nios processor allows up to 64 prioritized, vectored interrupts
numbered 0 to 63. The lower the interrupt number, the higher the priority.
Interrupt vectors 0 through 15 are reserved for system services, leaving 48
interrupt vectors for user applications.

See the Nios 16-Bit Programmer’s Reference Manual or Nios 32-Bit
a P

Programmer’s Reference Manual for details on Nios CPU exception
handling.

Altera Corporation 21

Overview

Nios Software Development Reference Manual

22

nr_installuserisr

This routine installs a user interrupt service routine for a specific interrupt
number. If nr_installuserisr() is used to set up the interrupt vector table,
standard compiled C functions can be specified as interrupt service
routines. This is useful for software designers who are not familiar with
the low-level details of the Nios interrupt vector table. This function is
declared in the include file nios.h.
1= If you manipulate the vector table directly, you must completely
understand the mechanisms of the Nios register window, control
registers, and so on, so that interrupt requests execute and return

properly.

The user interrupt service routine receives the context value as its only
argument when called. The interrupt service routine itself must clear any
interrupt condition for a peripheral it services.

Syntax:
void nr_installuserisr(int trapNumber, void
*ni os_i srhandl erproc, int context);

Parameters
Parameter Name Description
trapNumber Interrupt number to be associated with a user interrupt

service routine

nios_isrhandlerproc | User-supplied routine with the prototype:
typedef void (*nios_isrhandl erproc)(int
context);

context A value passed to the routine specified by
nios_isrhandlerproc

Altera Corporation

Nios Software Development Reference Manual Overview

Altera Corporation

nr_installuserisr2

This routine is similar to nr_installuserisr, except when the user interrupt
service routine is called, the interrupt number and the interrupted PC are
passed by the funnel routine to the user interrupt handler, as well as the
context.

Syntax:
void nr_installuserisr2(int trapNunber, void
*ni os_i srhandl erproc2, int context);

Parameters
Parameter Name Description
trapNumber Interrupt number to be associated with a user interrupt

service routine

nios_isrhandlerproc2 | User-supplied routine with the prototype:

typedef void (*nios_isrhandl erproc2)(int
context, int irg_nunber, int
interruptee_pc);

context A value passed to the routine specified by
nios_isrhandlerproc

irg_number Interrupt request number (trapNumber)

interruptee_pc Return address from the interrupt

CWP Manager

A detailed understanding of the windowed register file is not required to
write Nios software. The CWP Manager routine handles the details of
manipulating the register file during subroutine calls. This section
describes the CWP Manager since it becomes part of most users’ final
software.

The Nios embedded processor contains 128, 256, or 512 general-purpose
registers. Of these, 32 are visible to the software at any particular moment.
They are named %r0-%r31, and can also be referred to as %g0-%g7
(global), %00-%07 (out), %L0-%L7 (local), and %i0-%i7 (in).

The CWP bits of the Nios STATUS register (%ctl0, readable via the RDCTL
instruction) determines which 32 registers are visible. See the Nios 16-Bit
Programmer’s Reference Manual or Nios 32-Bit Programmer’s Reference
Manual for details.

23

Overview

Nios Software Development Reference Manual

24

Subroutines execute a SAVE instruction, which decrements the CWP by
one, revealing 16 “new” registers. The “caller’s” %o registers are visible to
the “callee” as %i registers. Eventually, however, there are no more
registers to reveal, and the CWP points to the lowest registers.

When the supply of registers is exhausted and a SAVE is executed, it
induces a software exception that is handled by the CWP Manager’s
underflow handler. This handler saves every register onto the stack, and
repositions the CWP back to the top.

Conversely, subroutines execute a RESTORE instruction when they are
ready to return. If the CWP is already at the top of the register file, a trap
is induced, which is handled by the CWP Manager’s overflow handler.
This handler restores the register contents from memory where they were
saved earlier by the corresponding underflow condition.

nr_installcwpmanager

This routine is called automatically by _start() if the library was built with
__nios_use_cwpmgr__ = 1. It installs service routines for the Nios CPU
underflow and overflow exceptions. This function is declared in the
include file nios.h.

Syntax:

void nr_install cwprmanager (voi d);

General-Purpose System Routines

The following sections describe the routines that perform general-
purpose operations.

nr_delay

This routine causes program execution to pause for the number of
milliseconds specified in milliseconds. During this delay, the function
executes a tight countdown loop a fixed number of iterations, based on the
system clock frequency specified at the time the Nios CPU was defined.
This function is declared in the include file nios.h.

Syntax:
void nr_delay(int mlliseconds);

The mi | | i seconds parameter is the length of time, in milliseconds, for
program execution to be suspended.

Altera Corporation

Nios Software Development Reference Manual Overview

nr_zerorange

This routine writes zero to a range of bytes starting at rangeStart and
counting up, writing rangeByteCount number of zero bytes. This function
is declared in the include file nios.h.

Syntax:

voi d nr_zerorange(char *rangeStart, int rangeByteCount);

Parameters
Parameter Name Description
rangeStart First byte to set to zero
rangeByteCount Number of consecutive bytes to set to zero
H|g h-Level c These routines are always present in the Nios library, unless disabled in
the Makefile:

Support

Table 7. High-Level C Support Routines

Routine | Source File Description

printf | nios_printf.c | This version of the standard C printf() function omits all
support for floating point numbers, and supports only %d,
%X, %X, %c, and %s formats. The Nios library includes
this version of printf() because the standard library
routine takes about 40 Kbytes of Nios code. This large
footprint is primarily for floating point support, and the
Nios CPU is often used for applications that do not
require floating point. The Nios library version of printf()
is about 1 Kbyte of Nios code.

sprintf | nios_printf.s | This routine uses the Nios library’s version of printf() to
print to a string in memory.

Altera Corporation 25

Overview Nios Software Development Reference Manual

26 Altera Corporation

AN]

Routines

Nios Peripheral

Routines

Table 8 summarizes C (or assembly) callable peripheral routines and

macros that are automatically added to the custom SDK library when the
corresponding peripherals are included in the Nios system design.

See the Nios Embedded Processor Peripherals Reference Manual for more

information on the DMA, PIO, SPI, Timer, and UART peripherals,
including details on registers, bits, and peripheral template file (PTF)

assignments.

Table 8. Peripheral Routines Summary

Peripheral

Routine

Description

Debug Core

nr_debug_start

Initializes the debug core and begins monitoring instruction
and data busses

nr_debug_stop

Halts debug core

nr_debug_dump_trace

Dumps the full contents of trace memory in text format

nr_debug_isr_halt

Interrupt service routine that dumps trace memory and
returns to the GERMS monitor

nr_debug_isr_continue

Interrupt service routine that dumps trace memory and
continues normal execution

nm_debug_get_reg

Gets a debug core register value

nm_debug_set_reg

Sets a debug core register value

nm_debug_set _bp0

Sets up hardware breakpoint O

nm_debug_set_bpl

Sets up hardware breakpoint 1

Direct Memory
Access (DMA)

nr_dma_copy_1_to_1

nr_dma_copy_1_to_range

nr_dma_copy_range_to_range

nr_dma_copy_range_to_1

Transfers a range of bytes, half-words, or words between the
source address and destination address.

Parallel
Input/Output
(P1O)

nr_pio_showhex

Converts a 16-bit value to display as two hex digits on a
seven-segment LED connected to a PIO.

Serial Peripheral
Interface (SPI)

nr_spi_rxchar

Reads a character from the SPI peripheral whose address is
passed as an argument.

nr_spi_txchar

Sends a single character to the SPI peripheral whose
address is passed as an argument.

Altera Corporation

27

Routines

Nios Software Development Reference Manual

Table 8. Peripheral Routines Summary

Peripheral Routine Description

Timer nr_timer_milliseconds Installs an interrupt service routine and returns zero the first
time it is called. For each subsequent call, returns the
number of milliseconds elapsed since the first call.

Universal nr_uart_rxchar Reads a character from the UART whose address is passed

Asynchronous as an argument.

Receiver/ ; ;

) nr_uart_txcr Sends a carriage return and line feed to the UART at address
Transmitter .
(UART) nasys_printf_UART.

nr_uart_txchar

Sends a single character to the UART whose address is
passed as an argument.

nr_uart_txhex

Prints an integer value, in hexadecimal, to the UART at
address nasys_printf_UART.

nr_uart_txhex16

Prints the value of a short integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txhex32

Prints the value of a long integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txstring

Prints a null-terminated string to the UART at address
nasys_printf_UART.

28

Altera Corporation

Nios Software Development Reference Manual Routines

Debug Core

Table 9. Debug Core Register Map

Index | Register Name |R/W Description/Register Bits

0 interrupt RO |Bit 0: dbpO (data breakpoint 0)

Bit 1: dbp1l (data breakpoint 1)

Bit 2: ibpO0 (instruction breakpoint 0)
Bit 3: ibp1 (instruction breakpoint 1)
Bit 4: mem (memory breakpoint)

1 n_samples_lIsb RO | 16 least significant bits (LSBs) of the number of samples
2 n_samples_msb RO | 16 most significant bits (MSBs) of the number of samples
3 data_valid RO | True when a trace sample is loaded into the trace registers
4 trace_address RO |[Most recently read trace address
5 trace_data RO | Most recently read trace data
6 trace_code RO |Bit 0: skp = 0 (skip) Bit 0: skp = 1 (skip)
Bit 1: fifo_full Bit 1: fifo_full
Bit 2: bus (instruction/data) Bits 2-8: skp_cnt (skip count)
Bit 3: rw (read/write)
Bit 4: intr (interrupt)
7 write_status RO |Bit O: writing
Bit 1: nios32
Bit 2: trace
8 start WO | Any write: start debug core
9 stop WO | Any write: stop debug core
10 read_sample WO | Any write: initiate transfer of next available trace sample to the trace registers
11 trace_mode WO | Write 1: enable extended trace mode. Write 0: disable extended trace mode

12 mem_int_enable | WO | Control number of trace samples accumulated before a memory interrupt is generated
If 0: no memory interrupt
If > 0: shift left by 2 for number of samples to collect

13 ext_break_enable | WO [Write 1: enable external break signal. Write O: disable external break signal

14 sw_reset WO [Any write: reset debug trace

16 address_pattern_0 | WO [Store breakpoint 0’s address pattern

17 address_mask_0 | WO | Store breakpoint 0’s address mask

18 data_pattern_0 WO | Store breakpoint 0’s data pattern

19 data_mask_0 WO | Store breakpoint 0’s data mask
20 code_0 WO | Store breakpoint 0’s break code
Bit 0: read
Bit 1: write
Bit 2: fetch

24 address_pattern_1 | WO [Store breakpoint 1's address pattern

25 address_mask_1 | WO | Store breakpoint 1's address mask

26 data_pattern_1 WO | Store breakpoint 1's data pattern

27 data_mask_1 WO | Store breakpoint 1's data mask
28 code_1 WO | Store breakpoint 1's break code
Bit 0: read
Bit 1: write
Bit 2: fetch

Altera Corporation 29

Routines

Nios Software Development Reference Manual

30

Debug Core Register Access

The debug core registers described in Table 9 are accessed through Nios
Control registers 3 and 4 using the WRCTL and RDCTL instructions.
Control register 3 acts as an index register, while control register 4 acts as
the data register.

To read a debug core register, you:

1. Write its index form the table above into control register 3.

2. Read its value from control register 4.

To write to a debug core register, you:

1. Write its index from the table above into control register 3.

2. Write the value to control register 4.

Debug Core Trace Data

Trace data is read from the core in reverse time order. That is, the first
sample read from the core is the most recent sample stored and the last
sample read from the core is the earliest sample stored.

Debug Core Interrupt

The debug core has a hard coded IRQ number. This number is defined in
nios.h and can be referenced as nasys_debug_core_irq.

Altera Corporation

Nios Software Development Reference Manual Routines

Debug Core Software Routines and Macros

The debug core routines are always present in the Nios library. The
functions and macros are declared in the include file nios.h.

Trace data is also compressed, so the trace dumps provided by the
routines below must be processed with the tracelink utility (see
“tracelink” on page 86).

nr_debug_start

This routine resets the debug core and instructs it to begin monitoring the
instruction and data bus transactions.

Syntax
nr_debug_start();

nr_debug_stop

This routine causes the debug core to stop monitoring the instruction and
data busses.

Syntax

nr_debug_stop();

nr_debug_dump_trace

This routine dumps all accumulated trace samples in ASCII format out the
specified serial port. The output from this function can be used by the
tracelink utility to create a full instruction and data trace.

Syntax

nr_debug_dunp_trace (void *uart)

Parameter

This parameter is maintained for compatibility with previous releases, but
is now ignored. This routine always prints out the default printf uart.

Altera Corporation 31

Routines

Nios Software Development Reference Manual

32

nr_debug_isr_halt

This interrupt service routine for the Nios debug core can be installed with
the nr_installuserisr routine (see “nr_installuserisr” on page 22). The
nr_installuserisr cont ext parameter isignored. Trace dumps are sent out
the default printf uart.

Once installed, this routine executes on any debug core break condition,
dumping the interrupt cause followed by all trace samples accumulated
to the point the interrupt service routine was called. When all trace
samples are dumped, the interrupt service routine returns control to the
GERMS monitor.

nr_debug_isr_continue

This interrupt service routine for the Nios debug core can be installed with
the nr_installuserisr routine (see “nr_installuserisr” on page 22). The
nr_installuserisr cont ext parameter isignored. Trace dumps are sent out
the default printf uart.

Once installed, this routine executes on any debug core break condition,
dumping the cause of the interrupt followed by all trace samples
accumulated to the point the interrupt service routine was called. When
all trace samples are dumped, the interrupt service routine returns control
to the user program.

nm_debug_get_reg

This macro reads the value of a debug core register.

Syntax

nm debug_get _reg (val ue,

of f set);
Parameters
Parameter Name Description
value The specified register’s value
offset Debug core register index

Altera Corporation

Nios Software Development Reference Manual Routines

nm_debug_set _reg

This macro writes a value to a debug core register.

Syntax
nm debug_set _reg (val ue,
of fset);
Parameters
Parameter Name Description
value Value to be written to the specified register’s value
offset Debug core register index

nm_debug_set_bp0 and nm_debug_set bp1

These macros store all the register values for breakpoint 0 and 1,
respectively.

Syntax

nm debug_set _bp0 (address_pattern, address_nask,
dat a_pattern, data_nask,
br eak_code);

nm debug_set _bpl (address_pattern, address_nask,
dat a_pattern, data_nask,
br eak_code);

Parameters

The debug core uses the above parameters to determine when to trigger a
hardware break. The equation used is:

(Actual Bus Address & address_mask = address_pattern) &
(Actual Bus Data & data_mask = data_pattern) &
(Actual Bus Transaction & break_code!= 0)

Altera Corporation 33

Routines

Nios Software Development Reference Manual

DMA

Table 10. DMA Register Map

A2..A0| Register | R/W Description/Register Bits
Name st o8| 7|65][als][2]1]0
0 status? RW len |weop | reop | busy | done
1 readaddress | RW Read master start address
2 writeaddress | RW Write master start address
3 length RW Length in bytes
4 reservedl - Reserved
5 reserved2 - Reserved
6 control RW |Wcon| rcon | leen |Ween| reen | i_en | go |W0rd| hw | byte
7 reserved3 - Reserved
Notes

(1) A write operation to the st at us register clears the | en, weop, r eop, and done bits.

34

DMA Software Data Structure

typedef volatile struct

{
int np_dnast at us; /1 status register
int np_dnar eadaddr ess; /1 read address
int np_dmawriteaddress; // wite address
int np_dnal engt h; /1 length in bytes
int np_dmareservedl; !/l reserved
int np_dmareserved2; // reserved
int np_dnmacontrol; /1 control register
int np_dmareserveds3; /1 reserved

} np_dme;

Altera Corporation

Nios Software Development Reference Manual

Routines

Altera Corporation

DMA Software Routines

The DMA routines are present in the Nios library when one or more DMA
peripherals are present in the Nios system. These functions are declared
in the include file nios.h.

nr_dma_copy_1_to_1

This routine transfers “transfer_count” units of data between the
unchanging source address and destination address.

Syntax

nr_dma_copy_1 to_1

(

np_dma *dmma,

int bytes_per_transfer,
voi d *source_address,

voi d *destination_address,
int transfer_count

)

Parameters

Parameter Name

Description

dma

Which DMA peripheral to use

bytes_per_transfer

Must be 1, 2, or 4, but does not have to match the bus size

source_address

Address to transfer data from

destination_address

Address to transfer data to

transfer_count

Number of individual data transfers to perform

35

Routines Nios Software Development Reference Manual

nr_dma_copy_1_to_range

This routine transfers “transfer_count” units of data between the source
address and destination address. The same source address is used
repeatedly, while the destination address increments by
“bytes_per._transfer” each transaction.

Syntax

nr_dme_copy_1_to_range
(
np_dma *dmma,
int bytes_per_transfer,
voi d *source_address,
void *first_destination_address,
int transfer_count

)
Parameters
Parameter Name Description
dma Which DMA peripheral to use
bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size
source_address Address to transfer data from
first_destination_address | Address to transfer data to
transfer_count Number of individual data transfers to perform

36 Altera Corporation

Nios Software Development Reference Manual Routines

nr_dma_copy_range_to_range

This routine transfers “transfer_count” units of data between the source
address and destination address. Both the source address and the
destination address increment by “bytes_per_transfer” each transaction.

Syntax

nr_dma_copy_r ange_t o_r ange
(
np_dma *dmm,
int bytes_per_transfer,
voi d *first_source_address,
voi d *first_destinati on_address,
int transfer_count

)
Parameters
Parameter Name Description
dma Which DMA peripheral to use
bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size
first_source_address Address to transfer data from
first_destination_address | Address to transfer data to
transfer_count Number of individual data transfers to perform

Altera Corporation 37

Routines Nios Software Development Reference Manual

nr_dma_copy_range_to_1

This routine transfers “transfer_count” units of data between the source
address and destination address. The source address increments by
“bytes_per_transfer” each transaction, while the same destination address
is used repeatedly.

Syntax

nr_dme_copy_range_to_1
(
np_dma *dmma,
int bytes_per_transfer,
voi d *first_source_address,
voi d *desti nation_address,
int transfer_count

)
Parameters
Parameter Name Description
dma Which DMA peripheral to use
bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size
first_source_address Address to transfer data from
destination_address Address to transfer data to
transfer_count Number of individual data transfers to perform

38 Altera Corporation

Nios Software Development Reference Manual Routines

P10

Table 11. PIO Register Map
A1..A0 | Register Name R/W Variable Size—1 to 32 bits
0 data read RO Data value currently on PIO inputs
write WO New value to drive on PIO outputs
direction RW Data direction (optional): Individual control for each PIO bit
interruptmask RW Interrupt mask (optional): Per-bit IRQ enable/disable
edgecapture! RW Edge capture (optional): Per-bit synchronous edge detect and hold
Note

(1) A write operation to the edgecapt ur e register clears all bits in register 0.

PIO Software Data Structure

typedef volatile struct

{
int np_piodata; /'l read/wite, up to 32 bits
int np_piodirection; /Il write/readable, up to 32 bits,
/] 1->output bit
int np_piointerruptnask; // wite/readable, up to 32 bits,
/'l 1->enabl e interrupt
int np_pi oedgecapt ure; /'l read, up to 32 bits,
/Il cleared by any wite
} np_pio;

Example: Direct access to P10

voi d TurnOnLEDs(voi d)
{

/1 the reference design has a Pl O naned na_l ed_pi o
/1 that controls two LEDs on the devel opnent board

na_l ed_pio->np_piodirection = 3; // Set direction: output

na_l ed_pi o->np_pi odata = O; /1l both LEDs off
nr_del ay(1000); /1 wait 1 second
na_l ed_pi o->np_pi odata = 1; /1 turn on first led
nr_del ay(1000); /!l wait 1 second
na_l ed_pi o->np_pi odata = 3; /1 both LEDs on

Altera Corporation 39

Routines Nios Software Development Reference Manual
PIO Software Routine: nr_pio_showhex
The nr_pio_showhex routine is present in the Nios library when one or
more PIO peripherals are present in the Nios system. This function is
declared in the include file nios.h.
The nr_pio_showhex routine assumes a 16-bit wide PIO named
“na_seven_seg_pio” is attached to a two-digit seven-segment display, in
which segments are illuminated when the corresponding bits are set to 0.
PIO bits are assigned to the seven-segment display elements as shown:
Figure 1. Seven-Segment Display
AP AN
9 13 1 5
L/, N\ L/, N
- (o
10 12 2 4
N PAD) N @
Syntax
voi d nr_pi o_showhex(int val ue);
Parameter
The val ue parameter indicates the data to be sent to the seven-segment
display.
Example
#i nclude "nios. h"
voi d mai n(voi d)
{
int c;
printf("Please enter a character:\n");
while((c = nr_uart_rxchar(0)) == -1); // wait for valid input
nr _pi o_showhex(c);
printf("Your character is:\t%, in hex:0x%2x\n", c, c);
}
40 Altera Corporation

Nios Software Development Reference Manual Routines

SPl Table 12 shows a register map for SPI master and slave devices with an
n-bit transmit/receive shift register operating as master and slave devices.

Table 12. SPI Register Map
A2..A0 | Register R/W Description/Register Bits
Name
5| ... [s[7][6]s5|a]s]2][1]0
0 rxdata RO rxdata(n-1..0)
1 txdata WO txdata(n-1..0)
2 status? RW e rrdy | trdy | tmt | toe | roe
3 control RW ie | irrdy | itrdy itoe | iroe
4 reserved - Present only on master
5 slaveselect | RW Slave select mask—present only on master
Notes

(1) A write operation to the st at us register clears the r oe, t oe, and e bits.

SPI Software Data Structure

typedef volatile struct

{

int np_spirxdata; /'l Read-only, 1-16 bit

int np_spitxdata; /'l Wite-only, 1-16 bit

int np_spistatus; /'l Read-only, 9-bit

int np_spicontrol; /1 Read/Wite, 9-bit

int np_spireserved; /'l reserved

int np_spislaveselect; // Read/Wite, 1-16 bit, master only
} np_spi;

Altera Corporation 41

Routines Nios Software Development Reference Manual

SPI Software Routines

The SPI routines are present in the Nios library when one or more SPI
peripherals are present in the Nios system. These functions are declared
in the include file nios.h.

nr_spi_rxchar

This routine reads a character from the SPI peripheral whose address is
passed as pSPL

Syntax
int nr_spi_rxchar(np_spi *pSPl);

Parameter

The pSPI parameter is a pointer to the SPI peripheral.

nr_spi_txchar

This routine sends a single character, i, to the SPI peripheral whose
address is passed as pSPI.

Syntax

int nr_spi _txchar(int i, np_spi *pSPl);
Parameters

Parameter Name Description

i Character to be sent

pSPI Pointer to the SPI peripheral

42 Altera Corporation

Nios Software Development Reference Manual Routines

Timer
Table 13. Timer Register Map
A2..A0 | Register R/W Description/Register Bits
Name
15 .. | 3 | 2 1 0
0 status RW run to
1 control RW | stop | start cont ito
2 periodl RW Timeout Period — 1 (bits 15..0)
3 periodh RW Timeout Period — 1 (bits 31..16)
4 snaplt RW Timeout Counter Snapshot (bits 15..0)
5 snaph? RW Timeout Counter Snapshot (bits 31..16)
Notes

(1) A write operation to either the snapl or snaph registers updates both registers with a coherent snapshot of the
current internal counter value.

Timer Software Data Structure

typedef volatile struct

{
int np_tinmerstatus; // read only, 2 bits (any wite to clear TO)
int np_timercontrol; // wite/readable, 4 bits
int np_tinmerperiodl; // wite/readable, 16 bits
int np_tinerperiodh; // wite/readable, 16 bits
int np_tinmersnapl; /1 read only, 16 bits
int np_tinmersnaph; /1 read only, 16 bits
} np_tinmer;

Altera Corporation 43

Routines

Nios Software Development Reference Manual

Example: Direct access to Timer

#i ncl ude

int main

"nios. h"

(void)
{

int t =

0;

/1 Set timer for 1 second

na_ti nmer1->np_tinerperiodl
na_ti nmer1->np_ti nerperiodh

short) (nasys_cl ock_freq & 0x0000ffff);

=
= (short) ((nasys_clock_freq >> 16) & 0x0000ffff);

/1 Set timer running, |ooping, no interrupts
na_tinmerl->np_tinercontrol = np_tinercontrol _start_nmask + np_timercontrol _cont_mask;

/1 Poll
whi l e(1)

timer for

ever, print once per second

if(na_timerl->np_tinmerstatus & np_tinerstatus_to_mask)

printf("A second passed! (%d)\n",t++);

// Clear the to (timeout) bit
na_timerl->np_tinerstatus = 0; // (any val ue)

}

44

Timer Software Routine: nr_timer_milliseconds

The nr_timer_milliseconds routine is present in the Nios library when one
or more Timer peripherals are present in the Nios system. This function is
declared in the include file nios.h.

This routine requires the existence of a Timer called t i mer 1, with a base
address defined by na_timer1 and an interrupt number defined by
na_timerl_irq. The first time this routine is called, it installs an interrupt
service routine for the Timer and returns zero. For each subsequent call,
the number of milliseconds elapsed since the first call is returned.

Syntax

int nr_timer_mlliseconds(void);

Altera Corporation

Nios Software Development Reference Manual Routines

UART

Table 14. UART Register Map
A2..A0| Register |R/W Description/Register Bits
Name
15 [12[1[w0|e|s|7]6|5][a[a]2]1]0
0 rxdata RO RxData
1 txdata \WYe} TxData
2 status? RW eop | cts |dcts| - e? rrdy | trdy | tmt | toe | roe | brk | fe | pe
3 control RW ieop| rts |idcts|trbk | ie [irrdy [itrdy | itmt | itoe | iroe | ibrk | ife | ipe
4 divisor RW Baud Rate Divisor (optional)
5 endofpacket| RW | End-packet value

Notes
(1) A write operation to the st at us register clears thedcts, e, t oe, roe, brk, f e, and pe bits.
(2) st at us register bit 8 (e) is the logical OR of the t oe, r oe, brk, f e, and pe bits.

UART Software Data Structure

typedef volatile struct

{

int np_uartrxdat a; /1 Read-only, 8-bit

int np_uarttxdat a; /Il Wite-only, 8-bit

int np_uartstatus; /1 Read-only, 9-bit

int np_uartcontrol; // Read/Wite, 9-bit

int np_uartdivisor; /] Read/Wite, 16-bit, optional

int np_uartendof packet; // Read/Wite, end of packet character
} np_uart;

UART Software Routines

The UART routines are present in the Nios library when one or more
UART peripherals are present in the Nios system. These functions are
declared in the include file nios.h.

Altera Corporation 45

Routines

Nios Software Development Reference Manual

46

nr_uart_rxchar

This routine reads a character from the UART peripheral whose address
is passed in uartBase. If no character is waiting, nr_uart_rxchar returns -1.
If zero is passed for the peripheral address, nr_uart_rxchar reads a
character from the UART at location nasys_printf_uart (nios.h).

Syntax

int nr_uart_rxchar(np_uart *uartBase);

Parameter

The uar t Base parameter is a pointer to the UART peripheral.

Example

#i ncl ude "ni os. h"
voi d main(voi d)
{

int c;

printf("Please enter a character:\n");

while((c = nr_uart_rxchar(nasys_printf_UART)) == -1)
; /Il wait for valid input

printf("Your character is:\t%\n", c);

nr_uart_txchar

This routine sends a single character, ¢, to the UART peripheral whose
address is passed as uartBase. If zero is passed for the peripheral address,
nr_uart_txchar sends a character to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txchar(int ¢, np_uart *uartBase);

Parameters

Parameter Name Description

c Character to be sent

uartBase Pointer to the UART peripheral

Altera Corporation

Nios Software Development Reference Manual Routines

Example

#i ncl ude "ni os. h"

#define kLineWdth 77
#defi ne kLi neCount 100

voi d SendLot s(voi d)

{
char c;
L 2
int mx;
printf("\n\nPress character, or <space> for mx: ");
while((c = nr_rxchar(0)) < 0);
printf("%\n\n",c);
/1 Don’t show unprintables
if(c < 32
c=".";
mx = c==" ';
for(i = 0; i < kLineCount; i++)
{
for(j = 0; j < kLineWdth; j++)
{
i f(mx)
{
c++;
if(c >= 127)
c = 33
}
nr_uart_txchar(c, nasys_printf_UART);
/'l send character to UART
}
nr_uart _txcr();
/'l send carriage return and new line
}
printf("\n\n");
}

Altera Corporation 47

Routines

Nios Software Development Reference Manual

48

nr_uvart_txcr
This routine sends a carriage return and line feed to the UART at location

nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txcr(void);

nr_uart_txhex

This routine prints the integer value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range for a 16-bit Nios
CPU is 0000 to FFFF, and for a 32-bit Nios CPU is 00000000 to FFFFFFFF.
Syntax

int nr_uart_txhex(int x);

Parameter

The x parameter is an integer value to be sent to UART.

nr_uvart_txhex16

This routine prints the 16-bit value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range is from 0000 to
FFFF.

Syntax

int nr_uart_txhex16(short x);

Parameter

The x parameter is a 16-bit integer value to be sent to UART.

Altera Corporation

Nios Software Development Reference Manual Routin

es

Altera Corporation

nr_uvart_txhex32

This routine prints the 32-bit value of x in hexadecimal to the UART at

location nasys_printf_uart (defined in nios.h). The range is from 00000000

to FFFFFFF. This routine is not available on a 16-bit Nios CPU.

Syntax

int nr_uart_txhex32(long x);

Parameter

The x parameter is a 32-bit integer value to be sent to UART.

nr_uart_txstring

This routine prints the null-terminated string s to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txstring(char *s);

Parameter

The s parameter is a pointer to a null-terminated character string.

49

Routines Nios Software Development Reference Manual

50 Altera Corporation

AN]

Utilities

Nios Software
Development

Utilities

The GNUPro software tools included in the Nios development kit contain
several general-purpose software development utilities, including the
Nios SDK Shell command line. Nios software is developed in the bash
environment. The SDK Shell provides a UNIX-like environment on a PC
platform, including most of the commands and utilities UNIX users are
accustomed to using. For details, enter “man bash” at the shell prompt
found at C:\ Altera\Excalibur\sopc_builder 2 _5\Nios SDK Shell.

Additionally, many Nios-specific utilities are included in the
development kit for generating and debugging software. This chapter
provides detailed descriptions of these utilities.

Table 15. Nios Utilities

Utility Name

Description

hexout2flash

Perl script that converts a Quartus Il .hexout file (device configuration file) to a .hexout.flash
file suitable for writing to flash memory on the Nios development board

nios_bash

Startup script to set the bash environment for Nios development (bash shell)

nios-build

Perl script that performs compilation and assembly of source files, links to Nios library, and
generates .srec file, suitable to download to the Nios development board (see nios-run)

nios-convert

Perl script to convert .srec files to .mif or .dat file format suitable for initializing on-chip memory

nios_csh Startup script to set the bash environment for Nios development (C shell)
nios-elf-as GNU assembler for Nios

nios-elf-gcc GNU C/C++ compiler for Nios

nios-elf-gdb GNU debugger for Nios

nios-elf-gprof

GNU C program execution profiler

nios-elf-ld

GNU linker for Nios

nios-elf-nm

GNU tool to extract symbols from Nios object files

nios-elf-objcopy

GNU utility to convert linker output (.out) to S-records (.srec)

nios-elf-objdump

GNU tool to disassemble Nios object files

nios-elf-size GNU utility to produce an object file size report for code (text), data (data), and uninitialized
storage (bss).

nios-run Utility for downloading and running a user .srec file, by performing terminal I/O

srec2flash Perl script that converts a .srec file to a .flash file, suitable for writing to the Nios development
board flash (software)

tracelink Associates a Nios object file and a trace dump file to generate an assembly listing of all

instructions traced, including all data accesses, skipped instructions, and interrupts.

Altera Corporation

51

Utilities

Nios Software Development Reference Manual

hexout2flash
ew
add
52

The Quartus Il and MAX+PLUS II software generate configuration files
for download to an Altera PLD. One configuration file format generated
by Quartus II is .hexout. hexout2flash converts a .hexout file to a .flash
file, suitable for writing to the flash device on the Nios development
board. hexout2flash creates a sequence of GERMS monitor commands to
erase a section of flash memory and relocate the .hexout file to the erased
section.

See the Nios Development Board Data Sheet for details on the Nios
development board.

Usage

hexout 2fl ash [options] <fil ename>[. hexout]

Options

Table 16. hexout2flash Options

Option Description

-b <base address> Location in flash to write file (default 0x180000)

--help Print help

Example

1. For afile called my_design.hexout, enter:
hexout 2f | ash nmy_desi gn. hexout

hexout2flash converts my_design.hexout to
my_design.hexout.flash.

2. To download the .flash file to the development board, enter:
ni os-run my_desi gn. hexout . fl ash

The design is written into flash memory at location 0x180000 and becomes
the default booting design for the development board.

Altera Corporation

Nios Software Development Reference Manual Utilities

nios_hash

Altera Corporation

nios_bashis a startup script that properly sets the bash shell environment
for software development using nios-build. nios-build requires two shell
variables to exist and be exported. A normal Windows install of the Nios
development utilities sets up these variables automatically. The shell
variables are:

m niosgnu = <Nios G\U tools |ocation>
The default location is
/altera/excalibur/sopc_builder_2_5/bin/nios-gnupro

® nioshin = <Nios bin |ocation>
The default location is /altera/excalibur/sopc_builder_2_5/bin

Usage

Source this script from the .bash_profile at shell startup time. It adds the
paths and shell variables needed to use the Nios tools.

53

Utilities

Nios Software Development Reference Manual

nios-build

54

nios-build is a Perl script that invokes the tools to compile, assemble, and
link Nios source code. It ensures the standard C libraries and standard
Nios libraries are linked with the user source code, and the associated
“include” paths are available. Most programs compile with no command
line options; reasonable defaults are assumed.

1= nios-build is a simple alternative to the Makefile. Use of
Makefiles is fully supported by the Nios software development
environment. For an example Makefile, see .../lib/Makefile. For
details on using Makefiles, see the GNU on-line documentation
by choosing Programs > Cygwin > Cygwin Documentation
(Windows Start Menu). In the help window that appears, click
Using make.

nios-build produces a file with the base name of the last source file on the
command line and the suffix .srec. The file is ready for downloading to the
Nios development board, which must have the GERMS monitor running,.
Sourece files are listed on the command line following the options. If only
one source file is specified, nios-build searches the current directory for

files with the same base name and underscore extensions.

Files ending with .s or .asm are passed to nios-elf-as. Files ending with .c
are passed to nios-elf-gcc. Files ending with .o are passed to nios-elf-1d.

Usage

ni os-build [options] <sourcefile>. [sco]

Altera Corporation

Nios Software Development Reference Manual

Utilities

Altera Corporation

Options

Table 17. nios-build Options

Option

Description

-b <base address>

Set code base address

-m16

Generate code for Nios 16

-m32

Generate code for Nios 32 (default)

-as <quoted string>

Pass command line options to assembler

-cc <quoted string>

Pass command line options to compiler

-Id <quoted string>

Pass command line options to linker

-d

Set NIOS_GDB=1 and generate debug script

-S

Silent mode (only print errors)

-| <file name>

Include system library

-0 <file name>

Output file name

--help Print help
--help 1 Print more help
Example

nios-build foo.c bar.s

Multiple files listed in the command line, as shown above, generate the
executable file bar.srec.

ni os-build helloworld.c

If the files helloworld_2.c and helloworld_3.s are in the same directory,

they are included in the build and the result is helloworld.srec.

55

Utilities Nios Software Development Reference Manual
n | 0sS-conve rt nios-convertis a Perl script that converts files from one format to another.

Source files can be .srec or .mif; destination files can be .mif or .dat.

nios-convert’s primary functions are:

m Convert executable software code or data files (.srec format) to
initialization files for on-chip memory (.mif format) in the Altera
PLD.

m Convert the data width. This is useful, for example, to store 32-bit
data in an off-chip 16-bit flash.

m Break wide data into multiple byte lanes. This is useful, for example,
to break 32-bit data into two lanes of 16-bit data to write into two off-
chip 16-bit flash memories used in parallel.

Destination files are named the same as the source file if no destination file

name is specified.

Usage

ni os-convert [options] <source file> [destFile]

Options

Table 18. nios-convert Options
Option Description
--lanes=x Break into multiple output files lane_0 .. _lane_(x-1) appended
--width=x Set output width to 8, 16, or 32
--oformat=f Format can be mif or dat
--comments=b | Comments in mif file enabled (1) or disabled (0). Default is
enabled.
--help Print help

Example

ni os- convert bootcode. srec bootcode. m f

converts file bootcode.srec to bootcode.mif.

56 Altera Corporation

Nios Software Development Reference Manual Utilities

nios_csh

Altera Corporation

nios_csh is a startup script that properly sets the C shell environment for
software development using nios-build.

Usage

Source this script from the .login at shell startup time.

Example

source /alteral/excalibur/sopc_builder_2 5/bin/nios_csh

If the .../altera/ directory is at a location other than /ust/altera, assign that
location to the shell variables “altera”. For example:

set altera = /downl oads/altera
sour ce /downl oads/ al t er a/ excal i bur/ ni os-sdk/ ni os_bash

57

Utilities

Nios Software Development Reference Manual

nios-elf-as

58

nios-elf-as is a Nios assembler that produces a relocatable object file from
assembly language source code. The object file contains the binary code
and debug symbols.

If you use nios-build to generate executable code from assembly source,
nios-elf-as is invoked automatically. It may be useful, however, to have a
working knowledge of the assembler command line options to help
optimize your assembly source code.

Usage

nios-elf-as [option...] [asnfile...]

Options

Table 19. nios-elf-as Options

Option Description

-a[sub-option...] Turn on listings
Sub-Options

c Omit false conditionals

d Omit debugging directives

h Include high-level source

| Include assembly

m Include macro expansions

n Omit forms processing

s Include symbols

L Include line debug statistics

=file Set listing file name (must be last sub-option)
-D Produce assembler debugging messages

--defsym SYM=VAL

Define symbol SYM to given value

-f

Skip white space and comment preprocessing

--gstabs Generate STABS debugging information

--gdwarf2 Generate DWARF2 debugging information

--help Show this message and exit

-I DIR Add DIR to search list for .include directives

-J Do not warn about signed overflow

-K Warn when differences altered for long displacements
-L Keep local symbols (such as starting with “L”")
--keep-locals

Altera Corporation

Nios Software Development Reference Manual

Utilities

Altera Corporation

Table 19. nios-elf-as Options

Option Description
-M Assemble in MRI compatibility mode
--mri
--MD <file> Write dependency information in <file> (default none)
-nocpp Ignored
-0 <objfile> Name the object file output <objfile> (default a.out)
-R Fold data section into text section
--statistics Print various measured statistics from execution

--strip-local-absolute

Strip local absolute symbols

--traditional-format

Use same format as native assembler when possible

--version Print assembler version number and exit
-W Suppress warnings

--no-warn

--warn Do not suppress warnings

--fatal-warnings

Treat warnings as errors

--itbl <insttbl> Extend instruction set to include instructions matching the
specifications defined in file <insttbl>

-w Ignored

-X Ignored

-Z Generate object file even after errors

--listing-lhs-width

Set width in words of the output data column of the listing

--listing-lhs-width2

Set width in words of the continuation lines of the output
data column; ignored if smaller than first line’s width

--listing-rhs-width

Set max width in characters of the lines from the source file

--listing-cont-lines

Set maximum number of continuation lines used for the
output data column of the listing

Table 20. Nios-Specific Command Line Options

Option Description
-m16 Nios-16 processor (16-bit)
-m32 Nios-32 processor (32-bit)

For more information on using the GNU assembler, see the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation (Windows Start Menuy). In the help window that appears,

click Using as.

59

Utilities

Nios Software Development Reference Manual

nios-elf-gcc

60

The GNU compiler invokes the necessary utilities:

Utility Description

cpp C preprocessor that processes all the header files and macros the target
requires

gcc Compiler that produces assembly language code from the processed C
files

as Assembler that produces binary code from the assembly language source

code and puts it in an object file

Id Linker that binds the code to addresses, links the startup file and libraries
to the object code, and produces the executable binary image

If you use nios-build to generate executable code, nios-elf-gcc is invoked
automatically. It may be useful, however, to have a working knowledge
of the C compiler command line options to help optimize your C code.

Usage

ni os-el f-gcc [options] file...

Options

Table 21. nios-elf-gcc Options

Option

Description

-pass-exit-codes

Exit with highest error code from a phase

--help Display this information (Enter “-v --help” to display
command line options of sub-processes)
-dumpspecs Display all built-in Spec strings

-dumpversion

Display compiler version

-dumpmachine

Display compiler’s target processor

-print-search-dirs

Display directories in the compiler’s search path

-print-libgcc-file-name

Display compiler’s companion library name

-print-file-name=<lib>

Display full path to library <lib>

-print-prog-name=<prog>

Display full path to compiler component <prog>

-print-multi-directory

Display root directory for versions of libgcc

-print-multi-lib

Display mapping between command line options and
multiple library search directories

-Wa,<options>

Pass comma-separated <options> onto assembler

-Wp,<options>

Pass comma-separated <options> onto preprocessor

Altera Corporation

Nios Software Development Reference Manual Utilities

Table 21. nios-elf-gee Options
Option Description
-WI,<options> Pass comma-separated <options> onto linker
-Xlinker <arg> Pass <arg> onto linker
-save-temps Do not delete intermediate files
-pipe Use pipes rather than intermediate files
-time Time the execution of each subprocess
-specs=<file> Override built-in specs with contents of <file>
-std=<standard> Assume input sources are for <standard>
-B <directory> Add <directory> to compiler's search paths
-b <machine> Run gcc for target <machine>, if installed
-V <version> Run gcc version number <version>, if installed
-v Display programs invoked by compiler
-E Preprocess only; do not compile, assemble, or link
-S Compile only; do not assemble or link
-C Compile and assemble, but do not link
-0 <file> Place output into <file>
-X <language> Specify language of the following input files.
Permissible languages are “c”, “c++", “assembler”, and
“none” (deduce language based on file extension).
-pg Compile with profiling

Options starting with -g, -f, -m, -O or -W are automatically passed onto the
sub-processes invoked by nios-elf-gcc. To pass other options onto these
processes, the -W<letter> options must be used.

Altera Corporation 61

Utilities

Nios Software Development Reference Manual

Table 22 lists Nios-specific options for nios-elf-gcc. The variable x used in
this table can be 0, 1, 2, 3, or 4. The variable w can be any number from
-1024 through 2047.

Table 22. Nios-Specific Options for nios-elf-gcc

Option

Description

-m16
-m32

Generate output for Nios 16 or Nios 32.

-mfewer-opcodes

Do not generate the opcodes LDS, LDP, STS, STP, STS8S, ST8S, STS16S,
and ST16S.

-mmax-addreSS=HEXADDR

Do not generate unnecessary PFX 0 and/or MOVHI 0 opcodes. When
HEXADDR <= 0xffff, PFX/MOVHI instruction pairs will not be generated for
addresses. When 0x10000 <= HEXADDR <= 0x1fffff, PFX instructions will not
be generated before MOVHI instructions for addresses. HEXADDR is a
hexadecimal address between 0 and ffffffff, optionally prefixed by “0x".

-muser-opcode-mul=pfx,,,usry
-muser-opcode-mul=usry

Generate USR, instructions for signed integer multiplication. For example:
int result, dataa, datab,;
result = dataa * dat ab;

A non-zero prefix is optional.

-muser-opcode-div=pfx,,,usry
-muser-opcode-div=usry

Generate USR, instructions for signed integer division. For example:
int result, dataa, datab;
result = dataa / datab;

A non-zero prefix is optional.

-muser-opcode-udiv=pfx,y,usry
-muser-opcode-udiv=usry

Generate USR, instructions for unsigned integer division. For example:
unsi gned int result, dataa, datab;
result = dataa / dat ab;

A non-zero prefix is optional.

-muser-opcode-mod=pfx,,,usry
-muser-opcode-mod=usr,

Generate USR, instructions for signed integer modulus. For example:
int result, dataa, datab;
result = dataa % dat ab;

A non-zero prefix is optional.

-muser-opcode-umod=pfX,,,usry
-muser-opcode-umod=usr,

Generate USR, instructions for unsigned integer modulus. For example:
unsi gned int result, dataa, datab;
result = dataa % dat ab;

A non-zero prefix is optional.

-muser-opcode-extv=usrx

Generate prefixed USR, instructions for signed bit-field extraction. The prefix
instruction’s 11-bit immediate value is lwwwwwppppp, where ppppp is the bit
position of the rightmost bit of the field to extract (LSB = 0), and wwwww is the
field’s width in bits. USR, must sign extend the extracted bit-field value to a full
integer.

62

Altera Corporation

Nios Software Development Reference Manual

Utilities

Table 22. Nios-Specific Options for nios-elf-gce

Option

Description

-muser-opcode-extzv=usrx

Generate prefixed USR, instructions for unsigned bit-field extraction. The
prefix instruction’s 11-bit immediate value is Owwwwwppppp, where ppppp is
the bit position of the rightmost bit of the field to extract (LSB = 0), and wwwww
is the field’s width in bits. USR, must zero-extend the extracted bit-field value
to a full integer.

-muser-opcode-insv=usry

Generate prefixed USR instructions for bit-field insertion. The prefix
instruction’s 11-bit immediate value is Owwwwwppppp, where ppppp is the bit
position of the rightmost bit of the field to insert (LSB = 0), and wwwww is the
field’s width in bits.

-muser-opcode-umax=pfx,,,usry
-muser-opcode-umax=usr,

Generate USR, instructions for unsigned integer maximum. C++ only.

-muser-opcode-smax=pfX,,,usry
-muser-opcode-smax=usry

Generate USR, instructions for signed integer maximum. C++ only.

-muser-opcode-umin=pfx,,,usry
-muser-opcode-umin=usry

Generate USR, instructions for unsigned integer minimum. C++ only.

-muser-opcode-smin=pfXx,,,usry
-muser-opcode-smin=usry

Generate USR, instructions for signed integer minimum. C++ only.

-muser-opcode-ffs=pfx,,,usry
-muser-opcode-ffs=usry

Generate USR, instructions for the internal ffs() function. ffs() finds the first set
bit of its int operand starting from the right, and returns that bit position,
incremented by 1. The USR, instruction must return 0 for an input of 0.

For more details on using the GNU compiler, refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin

Documentation (Windows Start Menuy). In the help window that appears,
click Using GNU CC.

Altera Corporation

63

Utilities

Nios Software Development Reference Manual

nios-elf-gdb

64

The GNU debugger (GDB) shows either what is going on inside another
program while it executes, or what another program was doing the
moment it stopped. GDB can:

Start the program and specify anything that might affect its behavior
Stop the program based on a set of specific conditions

Examine what happened once the program is stopped

Change the program to fix bugs and continue testing

Use GDB to debug programs written in assembly, C, and C++.

Usage

To debug a program using nios-build and nios-elf-gdb:
v/ Use nios-build with the “-d” command line option.

nios-build produces a file with the extension .gdb, which is a shell script
for downloading the program and running nios-elf-gdb. If your design
includes separate serial ports for host communication and debug
communications, nios-build -d will assign COM1 for host
communication and COM2 for serial communication. You can override
these assignments using the following command line options:

-d=<debug com port>

-p=<host com port>
= In previous versions of the Nios processor, to debug a program
using nios-build and nios-elf-gdb, a line with
“NIOS_GDB_SETUP” was required as the first statement in the
main() routine.

Options

Table 23. nios-elf-gdb Options

Option Description
--[noJasync Enable (disable) asynchronous version of CLI
-b <baudrate> Set serial port baud rate used for remote debugging
--batch Exit after processing options
--cd=<dir> Change current directory to <dir>
--command=<file> Execute GDB commands from <file>
--core=<corefile> Analyze the core dump <corefile>

Altera Corporation

Nios Software Development Reference Manual

Utilities

Altera Corporation

Table 23. nios-elf-gdb Options

Option

Description

--dbx

DBX compatibility mode

-d [=<COM port>]

Set NIOS_GDB=1, generate debug script and optionally
assign the com port for debug communication

--directory=<dir>

Search for source files in <dir>

--epoch

Output information used by epoch emacs-GDB interface

--exec=<execfile>

Use <execfile> as the executable

--fullname

Output information used by emacs-GDB interface

--help

Print this message

--interpreter=<interp>

Select a specific interpreter/user interface

--mapped Use mapped symbol files if supported on this system
--nw Do not use a window interface
--nx Do not read gdb.ini file

-p=<COM port>

Only use with -d option to set COM port for host
communication

--quiet Do not print version number on startup
--readnow Fully read symbol files on first access
--se=<file> Use <file> as symbol file and executable file

--symbols=<symfile>

Read symbols from <symfile>

--tty=<tty> Use <tty> for input/output by the program being debugged
--version Print version information and then exit

-w Use a window interface

--write Set writing into executable and core files

--xdb XDB compatibility mode

For more information, type hel p from within GDB, or consult the GDB
manual (available as on-line information or a printed manual).

For more details on using the GNU debugger, refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation (Windows Start Menu). In the help window that appears,
click Debugging with GDB.

65

Utilities

Nios Software Development Reference Manual

nios-elf-gprof

66

nios-elf-gprof produces an execution profile of a C program.

Usage

ni os-el f-gprof [option(s)]

Options

[objfile] gnon.out

Table 24. nios-elf-gprof Options

Option

Description

-a

Suppresses printing of statically declared functions

-b

Suppresses printing of a description of each field in the
profile

-C

The static call graph of the program is discovered by a
heuristic that examines the text space of the object file.
Static-only parents or children are shown with call
counts of 0.

-e <name>

Suppresses printing of the graph profile entry for
routine name and all its descendants (unless they
have other unsuppressed ancestors)

-E <name>

Suppresses printing of graph profile entry for routine
name and its descendants, and excludes the time
spent in <name> and its descendants from the total
and percentage time computations

-f <name>

Prints graph profile entry of only the specified routine
name and its descendants

-F <name>

Prints graph profile entry of only the routine name and
its descendants, and uses only the times of the printed
routines in total time and percentage computations

-k <fromname> <toname>

Deletes any arcs from routine <fromname> to routine
<toname>

-s Produces a profile file gmon.sum that represents the
sum of the profile information in all specified profile
files

-V Prints gprof version number and exits

-z Displays routines with zero usage (as shown by call

counts and accumulated time)

Altera Corporation

Nios Software Development Reference Manual Utilities

Example

1. Toseea profile for a C program, compile it with the “-pg” gcc option.
For example, to profile hello_world.c, enter:

nb hello_world.c -cc -pg
2. Inaddition to the normal text output when it is run, the program
outputs hexadecimal bytes preceded by “###”. These bytes must be
converted into a binary file to be fed to the nios-elf-gprof profiling
program. For example, enter:

nr hello_world.srec | tee hello_world.txt

The output is:

nios-run: Term nal node (Control-C exits)

00 01 04 00 8c 2e 04 00 d2 16 00 00 00 00 00 00
00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO
00 00 00 00 00 OO0 00 OO 00 OO 00 OO 00O 00 00 00
00 00 00 OO OO OO OO OO OO OO OO OO OO 0O 00 OO
00 00 00 00 00 OO 00 OO 00 OO 00 OO 00 00 00 00
00 00 00 00 00 00 00 OO 00 OO 00O OO OO 00 00 00
00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO
00 00 00 00 00 OO 00 OO 00 OO 00O OO 00O 00 00 00

00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO
00 00 00 00O 00 00 OO OO OO OO OO OO OO 00 00O 00
00 00 *

88 01 04 00 20 01 04 00 03 00 00 00O *

dc 01 04 00 20 01 04 00 01 00 00 00 *

f4 13 04 00 5¢c 01 04 00 01 OO0 00 0O *

The file hello_world.txt, which captures the above text, is created.

The utility nios-gprof-convert is a Perl script that strips away the
numbers followed by ### and converts them to binary. The result is
saved in the file gmon.out. This utility takes one argument
(<filename>) as its only input.

Altera Corporation 67

Utilities Nios Software Development Reference Manual

3. Enter:
ni os- gprof - convert hel l o_worl d. t xt
The output is:
Ni os Gorof Conversion Uility
Input file: hello_world. txt

Cut put file: gmon.out

4. nios-elf-gprof requires the files hello_world.out and gmon.out.
Enter:

ni os-el f-gprof -C-q hello_world.out --traditional gnon.out > hello_world.profile

This command uses the objfile hello_world.out to gather the
symbols and interpret gmon.out.

The end result is in hello_world.profile. The output is:

time is in ticks, not seconds
call graph profile:

The sum of self and descendents is the major sort for this Ilisting.
function entries:

granul arity: each sanple hit covers 4 byte(s) for 4.76% of 21.00 seconds

cal l ed/total parents
index %inme sel f descendents call ed+self name i ndex
cal | ed/total children
<spont aneous>
[1] 61.9 13.00 0. 00 txCharWait [1]
<spont aneous>
[2] 23.8 5.00 0.00 nr_uart _txchar [2]
<spont aneous>
[3] 9.5 2.00 0. 00 PrivatePrintf [3]
<spont aneous>
[4] 4.8 1.00 0. 00 profile_on [4]
0. 00 0. 00 1/1 done_cal l i ng_constructors [20]
[5] 0.0 0.00 0.00 1 mai n [5]

I ndex by function nane

[3] PrivatePrintf [2] nr_uart_txchar [1] txChar Wit
[5] main [4] profile_on
1= The Perl script nios-run-gprof, which automatically executes all

the above steps, is also provided in the Nios SDK.

68 Altera Corporation

Nios Software Development Reference Manual Utilities

Advanced Usage

In some instances, the default settings are not suitable to profile user code.
You can manipulate the sampling rate and code chunk size parameters by
editing nios_gprof.c in the .../sdk/lib directory. To do this, some
understanding of the profiling method is necessary.

In profiling, the compiler adds a call to _mcount at the beginning of each
function, including main(), and interrupts the user code at a specific rate.
The first call to _mcount() sets up all the data structures, buffers, and the
interrupt service routine. Subsequent calls trace the calling sequence.
While the profiled program is running, the timer (timer1) interrupts at its
rate (default is 10,000 interrupts per second), and increments a counter
corresponding to the interruptee’s PC. Each code chunk of size
HISTFRACTION has a corresponding 16-bit counter. The counter starts
initialized to zero and increments each time the timer interrupt routine
interrupts this code chunk (the HISTFRACTION default value is 2, which
will at least double the memory size requirement).

Some potential problems and their possible solutions are:

® Interrupt rate is too fast, causing counters to overflow
Solution: decrease sampling rate (TIMER_SAMPLE_RATE constant)
specified in interrupts per second

m Interrupt rate is too slow, causing non-repeatable, coarse results.
Solution: increase sampling rate

® Out of memory message appears when allocating buffers
Solution: increase code chunk size (HISTFRACTION constant) by
powers of 2

s As code chunk size increases, resolution decreases, thus the
wrong counter may be incremented.

To implement changes, edit .../sdk/lib/nios_gprof.c. Recreate the library
by typing “make al | ”.

1= You can exclude code from profiling by compiling different
modules with or without the - pg option. For example, if a
program consists of my_main.c, mod_1.c, and mod_2.c, and the
critical elements to profile are in mod_1.c, compile the modules
my_main.c and mod_2.c without the - pg option, and compile
mod_1.c with the - pg option.

Altera Corporation 69

Utilities

Nios Software Development Reference Manual

nios-elf-Id

The GNU linker resolves the code addresses and debug symbols, links the
startup code and additional libraries to the binary code, and produces an

executable binary image.

If you use nios-build to generate executable code, nios-elf-1d is invoked
automatically. It may be useful, however, to have a working knowledge

of the linker command line options.

Usage

nios-elf-1d [options] file...

Options

Table 25. nios-elf-Id Options

Option

Description

-a <keyword>

Shared library control for HP/UX compatibility

-A <arch>
--architecture <arch>

Set architecture

-b <target>
--format <target>

Specify target for following input files

-c <file>
--mri-script <file>

Read MRI format linker script

-d
-dc
_dp

Force common symbols to be defined

-e <address>
--entry <address>

Set start address

-E
--export-dynamic

Export all dynamic symbols

-EB

Link big-endian objects

-EL Link little-endian objects

-f <shlib> Auxiliary filter for shared object symbol table objects
--auxiliary <shlib>

-F <shlib> Filter for shared object symbol table

--filter <shlib>

-g Ignored

-G <size> Small data size (if no size, same as --shared)

--gpsize <size>

-h <filename>
-soname <filename>

Set internal name of shared library

70

Altera Corporation

Nios Software Development Reference Manual Utilities
Table 25. nios-elf-ld Options
Option Description
-| <libname> Search for library <libname>
--library <libname>
-L <directory> Add <directory> to library search path
--library-path <directory>
-m <emulation> Set emulation
-M Print map file on standard output
--print-map
-n Do not page align data
--nmagic
-N Do not page align data, do not make text read only
--omagic
-0 <file> Set output file name
--output <file>
-0 Optimize output file
-Qy Ignored for SVR4 compatibility
-r Generate relocatable output
-i
--relocateable
-R <file> Just link symbols (if directory, same as --rpath)
--just-symbols <file>
-S Strip all symbols
--strip-all
-S Strip debugging symbols
--strip-debug
-t Trace file opens
--trace
-T <file> Read linker script
--script <file>
-u <symbol> Start with undefined reference to <symbol>
--undefined <symbol>
-Ur Build global constructor/destructor tables
-V Print version information
--version
-V Print version and emulation information
-X Discard all local symbols
--discard-all
-X Discard temporary local symbols
--discard-locals
Altera Corporation 71

Utilities

Nios Software Development Reference Manual

Table 25. nios-elf-ld Options

Option

Description

-y <symbol>

--trace-symbol <symbol>

Trace mentions of <symbol>

-Y <path>

Default search path for Solaris compatibility

-z <keyword>

Ignored for Solaris compatibility

(

--start-group

Start a group

)

--end-group

End a group

-assert <keyword>

Ignored for SUnOS compatibility

-Bdynamic
_dy
-call_shared

Link against shared libraries

-Bstatic

-dn
-non_shared
-static

Do not link against shared libraries

-Bsymbolic

Bind global references locally

--check-sections

Check section addresses for overlaps (default)

--no-check-sections

Do not check section addresses for overlaps

--cref

Output cross reference table

--defsym <symbol>=<expression>

Define a symbol

--demangle

Demangle symbol names

--dynamic-linker <program>

Set the dynamic linker to use

--embedded-relocs

Generate embedded relocs

--errors-to-file <file>

Save errors to <file> instead of printing to stderr

-fini <symbol>

Call <symbol> at unload-time

--force-exe-suffix

Force generation of file with .exe suffix

--gc-sections

Remove unused sections (on some targets)

--no-gc-sections

Do not remove unused sections (default)

--help

Print option help

-init <symbol>

Call <symbol> at load-time

-Map <file>

Write a map file

--no-demangle

Do not demangle symbol names

--no-keep-memory

Use less memory and more disk /O

--no-undefined

Allow no undefined symbols

--no-warn-mismatch

Do not warn about mismatched input files

--no-whole-archive

Turn off --whole-archive

--noinhibit-exec

Create an output file even if errors occur

72

Altera Corporation

Nios Software Development Reference Manual Utilities

Table 25. nios-elf-ld Options
Option Description
--oformat <target> Specify target of output file
-gmagic Ignored for Linux compatibility
--relax Relax branches on certain targets
--retain-symbols-file <file> Keep only symbols listed in <file>
-rpath <path> Set runtime shared library search path
-rpath-link <path> Set link time shared library search path
-shared Create a shared library
-Bshareable
--sort-common Sort common symbols by size
--split-by-file Split output sections for each file
--split-by-reloc <count> Split output sections every <count> relocs
--stats Print memory usage statistics
--task-link <symbol> Do task level linking
--traditional-format Use same format as native linker
-Tbss <address> Set address of .bss section
-Tdata <address> Set address of .data section
-Ttext <address> Set address of .text section
--verbose Output lots of information during link
--version-script <file> Read version information script
--version-exports-section <symbol> | Take export symbols list from .exports, using <symbol> as the version
--warn-common Warn about duplicate common symbols
--warn-constructors Warn if global constructors/destructors are seen
--warn-multiple-gp Warn if the multiple GP values are used
--warn-once Warn only once per undefined symbol
--warn-section-align Warn if start of section changes due to alignment
--whole-archive Include all objects from following archives
--wrap <symbol> Use wrapper functions for <symbol>
--mpc860c0 =<words> Modify problematic branches in last <words> (1-10, default 5) words of a
page

Altera Corporation 73

Utilities Nios Software Development Reference Manual

The nios-elf-1d supported targets are:

elf32-nios
elf32-little
elf32-big
srec
symbolsrec
tekhex
binary

ihex

The nios-elf-1d supported emulations are:

m elfniosl6é
m elfnios32

There are no nios-elf-1d emulation-specific options.

For more details on using the GNU linker, refer to the on-line
a P

documentation by choosing Programs > Cygwin > Cygwin
Documentation. In the help window that appears, click Using 1d.

74 Altera Corporation

Nios Software Development Reference Manual Utilities

nios-e |f-n m nios-elf-nm lists public symbols and their values from object files.

Usage

nios-elf-nm[options] [file...]

Options

Table 26. nios-elf-nm Options

Option Description
-A Precede each symbol with the name of the input file where it
-0 was found
--print-file-name
-a Display debugger-only symbols
--debug-syms
-B Same as --format=bsd
-C Decode low-level symbol names into user-level names
--demangle
-D Display dynamic symbols rather than the normal symbol
--dynamic
-f <format> Use output format <format> (“bsd”, “sysv”, or “posix”)
-g Display only external symbols
--extern-only
-n Sort symbols numerically by address, not alphabetically
-V
--numeric-sort
-p Do not sort symbols
--no-sort
-P Use POSIX.2 standard output format instead of default
--portability format
-S When listing symbols from archive members, include index
--print-armap
-r Reverse sort order
--reverse-sort
--size-sort Sort symbols by size
-t <radix> Use <radix> (“d” for decimal, “o” for octal, or “x” for
--radix=<radix> hexadecimal) as the radix for printing symbol values

--target=<bfdname> | Specify object code format other than default format

-u Display only undefined symbols
--undefined-only

Altera Corporation 75

Utilities Nios Software Development Reference Manual

Table 26. nios-elf-nm Options

-l For each symbol, use debugging information to find a

--line-numbers filename and line number

-V Display nm’s version number and exit

--version

--help Display a summary of nm’s options and exit

Example

ni os-el f-nmhello_world.out > hello_world.nm

creates hello_world.nm, which includes a list of all symbols in the

program.

hell o_worl d. out:

000406b0 t CWPOver f | owTr apHandl er

000405fc t CWPUnder f | owTr apHandl er

000402d6 T PrivatePrintf

00040244 T RAMLi m t

00040ae8 A __bss_start

000408ca T _ divsi 3

000408fc T __nodsi 3

00040796 T __mul hi 3

00040796 T __mulsi 3

00000001 a __ni 0s32__

“ ‘- . For details on GNU nm, refer to the on-line documentation by choosing
Programs > Cygwin > Cygwin Documentation (Windows Start Menu).
In the help window that appears, click Using binutils, then nm.
76 Altera Corporation

Nios Software Development Reference Manual Utilities

nios-elf-o blc opy nios-elf-objcopy converts executable binary files (.out) to S-records,
which are suitable for ROM images and for download images to
embedded systems.

If you use nios-build to generate executable code, nios-elf-objcopy is
invoked automatically.

Usage

ni os-el f-obj copy <switches> in-file [out-file]

Options
Table 27. nios-elf-objcopy Options

Option Description
-I <bfdname> Assume input file is in format <bfdname>
-O <bfdname> Create an output file in format <bfdname>
-F <bfdname> Set both input and output format to <bfdname>
--debugging Convert debugging information, if possible
-p Copy modified/access timestamps to output
-j <name> Only copy section <name> into output
-R <name> Remove section <name> from output
-S Remove all symbol and relocation information
-g Remove all debugging symbols
--strip-unneeded Remove all symbols not needed by relocations
-N<name>> Do not copy symbol<name>
-K <name> Only copy symbol <name>
-L <name> Force symbol <name> to be marked as a local
-W <name> Force symbol <name> to be marked as a weak
--weaken Force all global symbols to be marked as weak
-X Remove all non-global symbols
-X's Remove compiler-generated symbols
-i <number> Only copy one out of every <number> bytes
-b <num> Select byte <num> in every interleaved block
--gap-fill <val> Fill gaps between sections with <val>
--pad-to <addr> Pad the last section up to address <addr>
--set-start <addr> Set the start address to <addr>
--change-start <incr> Add <incr> to start address
--change-addresses <incr> Add <incr>to LMA, VMA, and start addresses
--change-section-address <name>{=|+|-}<val> | Change LMA and VMA of section <name> by <val>

Altera Corporation 77

Utilities

Nios Software Development Reference Manual

Table 27. nios-elf-objcopy Options

Option

Description

--change-section-Ima <name>{=|+|-}<val>

Change LMA of section <name> by <val>

--change-section-vma <name>{=|+|-}<val>

Change VMA of section <name> by <val>

--[no-]Jchange-warnings

Warn if a named section does not exist

--set-section-flags <name>=<flags>

Set section <name>’s properties to <flags>

--add-section <name>=<file>

Add section <name> found in <file> to output

--change-leading-char

Force output format's leading character style

--remove-leading-char

Remove leading character from global symbols

--redefine-sym <old>=<new>

Redefine symbol name <old> to <new>

-V List all object files modified

--verbose

-V Display this program’s version number

--version

-h Display help for this utility

--help

“ ._ @ ordetails on GNU objcopy, refer to the on-line documentation by

choosing Programs > Cygwin > Cygwin Documentation (Windows Start
Menu). In the help window that appears, click Using binutils, then
objcopy.

78 Altera Corporation

Nios Software Development Reference Manual Utilities

nios-e"-ohi dum p This utility displays information about one or more object files. The
options control which information to display, thus allowing users to see
routine locations or code types produced by the compiler.

Usage
ni os- el f-obj dunp <switches> file(s)
Options

Use at least one switch listed in Table 28. Table 29 lists optional switches.

Table 28. nios-elf-objdump Switches

Switch Description
-a Display archive header information
--archive-headers
-f Display contents of the overall file header
--file-headers
-p Display object format specific file header contents
--private-headers
-h Display contents of the section headers
--[section-]headers
-X Display contents of all headers
--all-headers
-d Display assembler contents of executable sections
--disassemble
-D Display assembler contents of all sections
--disassemble-all
-S Intermix source code with disassembly
--source
-S Display full contents of all sections requested
--full-contents
-g Display debug information in object file
--debugging
-G Display STABS contents of an ELF format file
--stabs
-t Display contents of the symbol table(s)
--syms
-T Display contents of the dynamic symbol table
--dynamic-syms
-r Display relocation entries in the file
--reloc

Altera Corporation 79

Utilities

Nios Software Development Reference Manual

80

Table 28. nios-elf-objdump Switches

Switch Description
-R Display dynamic relocation entries in the file
--dynamic-reloc
-V Display this program’s version number
--version
-i List object formats and architectures supported
--info
-H Display this information
--help

Table 29. nios-elf-objdump Optional Switches

Switch

Description

-b <bfdname>
--target=<bfdname>

Specify target object format as <bfdname>

-m <machine>
--architecture <machine>

Specify target architecture as <machine>

-j <name> Only display information for section <name>
--section=<name>
-M Pass text <o> onto disassembler section

--disassembler-options <o>

-EB
--endian=big

Assume big endian format when disassembling

-EL
--endian=little

Assume little endian format when disassembling

--file-start-context

Include context from start of file (with -S)

Include line numbers and filenames in output

--line-numbers

-C Decode mangled/processed symbol names
--demangle

-w Format output for more than 80 columns

--wide

-z Do not skip blocks of zeroes when disassembling

--disassemble-zeroes

--start-address <address>

Start displaying data at <address>

--stop-address <address>

Stop displaying data at <address>

--prefix-addresses

Print complete address alongside disassembly

--[no-]show-raw-insn

Display hex alongside symbolic disassembly

--adjust-vma <offset>

Add <offset> to all displayed section addresses

Altera Corporation

Nios Software Development Reference Manual Utilities

The nios-elf-objdump supported targets are:

elf32-nios
elf32-little
elf32-big
srec
symbolsrec
tekhex
binary

ihex

Example
ni os-el f-objdunp -D hello_world.out > hello_world.objdunp

disassembles the object file hello_world.out and creates a disassembly
output file hello_world.objdump:

hell o_world. out: file format el f32-nios
Di sassenbly of section .text:

00040100 <nr_junptostart>:

40100: 06 98 pf x %hi (0xcO)
40102: 40 35 movi %0, Oxa
40104: 00 98 pfx %hi (0x0)
40106: 40 6¢ movhi %g0, 0x2
40108: cO0 7f jmp %90
4010a: 00 30 nop
4010c: 4e 69 ext 16d %sp, %02
4010e: 6f 73 *unknown*
00040110 <mai n>
40110: 17 78 save %p, Ox17
40112: 4a 98 pf x %hi (0x940)
40114: 88 35 movi %00, Oxc
40116: 00 98 pf x %hi (0x0)
40118: 88 6¢ movhi %0, 0x4
4011a: 04 98 pfx %hi (0x80)
4011c: al 36 movi %gl, 0x15
4011e: 00 98 pf x %hi (0x0)
40120: 41 6¢ movhi %gl, 0x2
40122: el 7f call %1
40124: 00 30 nop
40126: df 7f ret

40128: a0 7d restore

- For details on GNU objdump, see the on-line documentation by choosing
Programs > Cygwin > Cygwin Documentation (Windows Start Menu).

In the help window that appears, click Using binutils, then objdump.

Altera Corporation 81

Utilities Nios Software Development Reference Manual

n | 0s-e |f-size The nios-elf-size utility analyzes .out, .0, or .a files and produces a report
of code (text), data (data), and uninitialized storage (bss) sizes.

Usage

ni os-el f-size [options] [file...]

Options

Table 30. nios-elf-size Options

Option Description
-A Output from GNU size resembles output from System V
size
-B Output from GNU size resembles output from Berkeley
size

--format <compatibility> | Output from GNU size resembles output from
<compatibility> size (“sysv” or “berkeley”)

-d Display section size in decimal
-0 Display section size in octal
-X Display section size in hexadecimal
--radix <number> Display section size in <number> (“10” for decimal, “8”
for octal, “16” for hexadecimal)
--target <bfdname> Specify an object code format for objfile as <bfdname>
-V Display version number information on size itself
--version
--help Display a summary of arguments and options
“ .- For details on GNU size, refer to the on-line documentation by choosing

Programs > Cygwin > Cygwin Documentation (Windows Start Menu).
In the help window that appears, click Using binutils, then size.

82 Altera Corporation

Nios Software Development Reference Manual

Utilities

nios-run

Altera Corporation

The nios-run utility downloads code and/or data to the Nios
development board with the GERMS monitor running. nios-run is also
used as a terminal I/O program to interact with the GERMS monitor or
any other software running on the Nios development board.

When given a filename as a parameter, nios-run sends characters from the
file to the host communication UART on the Nios development board.
Usually these files are of type .srec with data to write into SRAM, or .flash
with data to burn into flash.

Usage
ni os-run [option(s)] [filenange]
Options
Table 31. nios-run Options
Option Description

-b <baud-rate>

Set the serial port baud rate (default = 115200)

-d

Provide additional debugging information during download

-e “<command>"

Execute a monitor command before entering terminal mode
(experimental)

-0 <seconds>

Quit after <seconds> seconds in terminal mode

-p <port-name>

Specify serial port (default = COM1:)

-s <millisecs>

Specify a per-character delay (useful for reluctant flash)

-t

Enter terminal mode without downloading code

-X Exit immediately after downloading code
-z Display timestamp for each line (useful for benchmarking)
Example

nios-run -p con? hello_world. srec

downloads the executable file hello_world.srec to the development board

via COM2.

83

Utilities

Nios Software Development Reference Manual

srec2flash

84

srec2flash converts executable code in a .srec file to a .flash file, which can
then be downloaded and burned into flash on the Nios development
board.

At system start-up, the GERMS monitor looks for code in flash memory at
location 0x140000. If user code is detected in flash, GERMS executes the
code. srec2flash takes code in a .srec file targeted for location 0x40100
(SRAM on the development board) and creates a .flash file. The .flash file
is a sequence of GERMS commands that prepare flash to be written, then
burn the contents of the .srec file into flash at location 0x140000.

However, because the executable code is assumed to be executed from
0x40100 in SRAM, some additional pre-processing is required. srec2flash
adds a small routine at the head of the user software. When executed, this
routine copies the user software (and itself) stored in flash at 0x140000 into
SRAM at 0x40100. After code is copied from flash to SRAM, program
execution begins from SRAM.

Usage

srec2flash <srec file> [fil enane]

Example

srec2fl ash hell o_world. srec

Generates the file hello_world.flash (partial listing follows):

Altera Corporation

Nios Software Development Reference Manual

Utilities

Altera Corporation

This file generated by srec2fl ash, part of
the Nlos SDK. This file contains a short
programto run out of flash menory which
copi es the main program down to RAM and
executes it there.

Oiginal file: hello_world. srec

Loader program

Erase flash sector 140000

This address is checked by gernsMon at startup

HHEHHH S HHHHHHHHHR

140000

#
S219140000009800350098406DC07F00304E696F73089810349044
S2191400156E1134116F08981234926C005A50048074015A500455
S21914002A8174011E0140415E92043012E27EF387003021981009
S21914003F340098106CB2993135115E08981234926C3224D27FA0
S206140054003061

#

Mai n program

#

r40100- 140100

S013000068656 C6C6F5F776F726C642E7372656376
S219040100069840350098406CCO7FO00304E696F7317784A988889
S219040115350098886C0498A1360098416CE17F0030DF7FA07D48
S21904012A17781298D95F1398DA5F1498DB5F1598DC5F1698DD09
S21904013F5F0833169849370098496CCB3302980B050B986135AC

To burn flash on the development board, use the nios-run utility:

nios-run -x hello_world.flash

For more details on this process, see the Altera white paper Converting
.srec Files to .flash Files for Nios Embedded Processor Applications at

http:/ /www.altera.com/literature/wp /wp_srec_to_flash.pdf.

85

http://www.altera.com/literature/wp/wp_srec_to_flash.pdf.

Utilities Nios Software Development Reference Manual

tracelink tracelink associates a Nios object file (generated with nios-elf-1d) and a
trace dump file (generated with the debug core routines described in
“Debug Core” on page 29) to generate an assembly listing of all
instructions traced, including all data accesses, skipped instructions, and
interrupts.
Usage
tracelink objectfile tracedunp
Example
ni os-run hel |l o_debug. srec > hel |l o_debug. dunp
hello_debug sends its trace output to the serial port, which is directed to
the file hello_debug.dump.
tracelink hello_debug.out hell o_debug.dunp > hell o_debug.trace
generates the output:
Reading in object and trace information...100%
Organizing trace stream.................. 100%
Generating instruction sequence........... 100%
Aligning skip information................. 100%
Aligning data information................. 100%
Generating report........ 100%

86 Altera Corporation

Nios Software Development Reference Manual Utilities

hello_debug.trace contains a full trace listing:

0x4009a br 40090 <nmai n+0x66>
0x4009c nop
0x40090 bsr 40010 <do_write>
0x40092 nmov %0, % 0
0x40010 save %sp, 0x17
0x40012 nmov % 0,% 0
0x40014 I'sli 90, 0x2
0x40016 pfx %i (0x10c0)
0x40018 novi %g1, 0x10
0x4001a pf x %hi (0x0)
0x4001c movhi %gl, 0x4
0x4001e add % 0, %g1
0x40020 nmovi %gl, Ox1
0x40022 I'sl %91,%0
0x40024 stp [% 0, 0x0], %91 WRI TE 0x4114c -> 0x80000000
0x40026 ret
0x40028 restore
0x40094 inc %0
0x40096 cnpi % 0, Ox1f
0x40098 skps cc_gt

SKI PPED 0x4009a br 40090 <mai n+0x66>
0x4009c nop
0x4009e nmovi % 0, 0x0
0x400a0 bsr 40010 <do_write>
0x400a2 nmov %0, % 0
0x40010 save %sp, 0x17
0x40012 nmov % 0,%0

Altera Corporation 87

Utilities Nios Software Development Reference Manual

88 Altera Corporation

A I:I-E D)/A Appendix

Appendix A:
GERMS
Monitor Usage

Altera Corporation

The GERMS prompt is a plus sign, “+*. Unknown commands are answered
with a question mark, “?*, followed by a new prompt “+”. The examples in
this section assume the Nios development board is configured with the
default Factory hardware image, and the GERMS monitor is running. The
vector table is located at 0x40000 and the program code starts at 0x40100. The
program used is hello_world.c. The vector table can be examined as follows:

+mi0000

#00040000: 0A52 0002 OFBA 0002 1014 0002 0A52 0002
#00040010: O0A52 0002 O0A52 0002 0A52 0002 0A52 0002
#00040020: 0A52 0002 0A52 0002 O0A52 0002 0A52 0002
#00040030: O0A52 0002 OA52 0002 0A52 0002 0A52 0002
+

Each time « is pressed, the next memory segment is displayed. For
example, press + five times to display:

#00040040: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040050: 0A52 0002 0A52 0002 0A52 0002 OA52 0002
#00040060: 0A52 0002 08E9 0002 0A52 0002 0A52 0002
#00040070: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+

#00040080: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#00040090: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400A0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400B0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+

#000400CD: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400D0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
#000400E0: 0A52 0002 0A52 0002 0A52 0002 OA52 0002
#000400F0: 0A52 0002 0A52 0002 0A52 0002 0A52 0002
+

#00040100: 984E 3780 9800 6C40 7FCD 3000 694E 736F
#00040110: 7817 9970 3408 9800 6C88 984C 35EL 9800
#00040120: 6C41 7FEL 3000 981A 3708 9800 6C48 7FE8
#00040130: 3000 7FDF 7DAO 0000 7817 9811 5FD8 9811
+

#00040140: 5BCL 7ECL 8004 3000 3438 8011 3000 9811
#00040150: 5BCL 9FFF 37E2 OFFF 6FE2 1041 7EE2 8004
#00040160: 3000 3438 8004 3000 3418 8001 3000 7FDF
#00040170: 7DA0 781C 9811 5FD8 9812 5FD9 9811 5BCL
+

89

xipuaddy I

Appendix

Nios Software Development Reference Manual

90

The vector table starts at 0x40000 and ends at 0x400FF. Each four bytes
represent an address for each of the 64 possible interrupts. In the case of
hello_world, no interrupts are set, so the above display is the address of
the routine r_spurious_irq_handler divided by 2. That is,
r_spurious_irq_handler is at 0x414a4. Divided by 2 it is at 0x020a52, seen
as 0x0A52 (lower half-word) and 0x0002 (higher half-word).

The program starts at 0x40100. Following is an excerpt from the start of
hello_world.objdump:

hell o_worl d. out: file format el f32-nios
Di sassenmbly of section .text:

00040100 <nr_junptostart>:

40100: 4e 98 pfx %i (0x9c0)
40102: 80 37 movi 9%g0, Ox1c
40104: 00 98 pfx %i (0x0)
40106: 40 6¢C movhi %go0, 0x2
40108: co 7f jmp %0

4010a: 00 30 nop

4010c: 4e 69 ext 16d %sp, Y02
4010e: 6f 73 usr0 %07, % 3

00040110 <mai n>:
#i ncl ude "ni os. h"

i nt main(void)

{

40110: 17 78 save %p, 0x17
11l
/1 This will not work wi thout a UART!
/1

NI OS_GDB_SETUP

printf ("\n\nHello fromN os.\n\n");
40112: 70 99 pf x %i (0x2e00)
40114: 08 34 nmovi %00, 0x0

Use the G command to start execution at a certain address. For example,
after hello_world.srec is run, it exits to the GERMS monitor. To run
hello_world again without exiting the monitor:

Altera Corporation

Nios Software Development Reference Manual Appendix

ref_32_2.1
+
g40100

Hello from N os.

*

#415B1234
ref_32_2.1
+

To write to a particular peripheral, only the address is required. For
example, by default, the Nios development board’s seven-segment LED is
ataddress 0x420. Write 0x3649 to display two vertical and three horizontal
lines:

+
m420: 3649
+

Hardware Considerations (32-Bit Nios CPU only)

When using the M command to write to memory, the monitor can use
either an ST8 (8-bit store), ST16 (16-bit store), or ST (32-bit store)
instruction. This is useful to know, as ST8 uses one byte enable, ST16 uses
two byte enables, and ST uses four byte enables to write. The following
examples demonstrate writing with each method.

To write a single byte:

+
nb0000: 30

+

nb0000

#00050000: 0030 0000 0000 0000 0000 0000 0000 0000
#00050010: 0000 0000 0000 0000 0000 0000 0000 0000
#00050020: 0000 0000 0000 0000 0000 0000 0000 0000
#00050030: 0000 0000 0000 0000 0000 0000 0000 0000

xipuaddy I

Altera Corporation 91

Appendix Nios Software Development Reference Manual

To write a single half-word:

+

nb0000: 1234

+

nb0000

#00050000: 1234 0000 0000 0000 0000 0000 0000 0000
#00050010: 0000 0000 0000 0000 0000 0000 0000 0000
#00050020: 0000 0000 0000 0000 0000 0000 0000 0000
#00050030: 0000 0000 0000 0000 0000 0000 0000 0000

To write a full word:

+

nb0000: ABCD9876

+

nb0000

#00050000: 9876 ABCD 0000 0000 0000 0000 0000 0000
#00050010: 0000 0000 0000 0000 0000 0000 0000 0000
#00050020: 0000 0000 0000 0000 0000 0000 0000 0000
#00050030: 0000 0000 0000 0000 0000 0000 0000 0000
+

In the next example, a new design is manually loaded in the default flash
area, such as hexout2flash does. Assuming the design
my_user_design.hexout is created, start the monitor from the bash shell:

[bash] .../mydir: nr -t
ni os-run: Terninal node (Control-C exits)

€180000
+
€190000
+
€1A0000
+

€1B0000
+

r 180000
+

<CTRL-C

92 Altera Corporation

Nios Software Development Reference Manual

Appendix

Appendix B:
Assembly
Language
Macros

The “e” commands erase the different blocks needed from the flash and
the “r” command relocates whatever is downloaded next, starting at that
address. The final step is to send the design:

[bash] .../nmydir: nr ny_user_design. hexout

The file nios_macros.s located in the .../inc¢/ directory provides several
assembly language macros useful for low-level programming and
debugging.

See the Nios 16-Bit Programmer’s Reference Manual or Nios 32-Bit
Programmer’s Reference Manual for details on assembly language
programming.

Table 32. Assembly Language Macros

Macro

Description

MOVIP %reg,value

Acts similarly to the Nios instruction MOVI, but allows any size constant. It
automatically uses a combination of BGEN, MOVI, MOVHI, and PFX to load the
value into the register. MOVIP uses as few of these instructions as possible.

MOVIP can only be used with defined constants; it generates an error if the
constant is not defined at assembly time.

MOVIA %reg,value

Load a native-sized value into the register. The native word size is 16 or 32 bits;
16-bit or 32-bit Nios CPU, respectively. The value need not be defined at
assembly time; the linker fills in the value later.

ADDIP %reg,value

Acts similarly to ADDI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

SUBIP %reg,value

Acts similarly to SUBI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

CMPIP %reg,value

Acts similarly to CMPI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

ANDIP %reg,value

Acts similarly to ANDI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

xipuaddy I

ANDNIP %reg,value

Acts similarly to ANDNI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

ORIP %reg,value

Acts similarly to ORI, but works for any 16-bit constant. It does not work for
constants greater than 16 bits.

_BR address

Acts similarly to BR, but uses %g7 to load the target address. The target address
is therefore not limited to the short branch range.

_BSR address

Acts similarly to BSR, but uses %g7 to load the target address. The target
address is therefore not limited to the short branch range.

nm_print string

Prints the quoted string to the default UART. It uses %00 and %g registers.

nm_println string

Like nm_print, but prints the string followed by a carriage return and line feed.

Altera Corporation

93

Appendix Nios Software Development Reference Manual

Table 32. Assembly Language Macros

Macro Description

nm_d_txchar char Expands out to a large block of code that transmits a character to the default
UART without altering any registers or requiring the CWP to move. It does use
stack space.

Because this macro does not affect any registers or the CWP, it is useful for
debugging interrupt handlers and low-level services, such as task switchers.

nm_d_txreg charl,char2,%reg | Expands out to a large block of code that transmits the two characters followed
by the register's hexadecimal value. It prints erroneous values for the stack
pointer register.

Because this macro does not affect any registers or the CWP, it can be useful
for debugging interrupt handlers and low-level services, such as task switchers.

94 Altera Corporation

NITERA

Index

Symbols

__mulhi3 routine 20

__mulsi3 routine 20
__nios_use_constructors__ setting 14
__nios_use_cwpmgr__ setting 14
__nios_use_fast_mul__ setting 17
__nios_use_small_printf__ setting 15
_BR macro 93

_BSR macro 93

_close routine 20

_exit routine 20

_fstat routines 20

_getpid routine 20

_kill routine 20

_read routine 20

_sbrk routine 20

_start routine 20, 21

_write routine 20

A

ADDIP macro 93

ANDIP macro 93

ANDNIP macro 93

Application software, creating and compiling 6
Assembly language macros 93

bash 51
Boot process, GERMS 10

c

C runtime support 20
CMPIP macro 93
Code

auto-booting transition 7

Altera Corporation

debugging 7

executable, downloading 7

CPU
core size 2
data path 3

Current window pointer. See CWP Manager.

CWP Manager 23
D

Data path, CPU 3
Data structures
DMA 34
PIO 39
SPI 41
Timer 43
UART 45
Debug core peripheral
interrupt 30
register access 30
registers 29
routines 31
trace data 30
Debugging code 7
Development flow 2
DMA peripheral
data structure 34
registers 34
routines 35

E
Execution speed, software 2

F

Flash memory
booting from 11
saving to 6

95

Index

Nios Software Development Reference Manual

G

General-purpose system routines 24
GERMS monitor 8-11

boot process 10

building processor 6

commands 9

usage examples 89

GNUPro utilities 51

H

Hardware acceleration 2
hexout2flash utility 51, 52

inc directory 12
Include directory 12
isatty routine 20

L

lib directory 16
libnios16.a library 19
libnios32.a library 19
Library
directory 16
routines 19

M setting 18

Macros
_BR93
_BSR 93
ADDIP 93
ANDIP 93
ANDNIP 93
CMPIP 93
MOVIA 93
MOVIP 93
nm_d_txchar 94
nm_d_txreg 94
nm_print 93
nm_println 93
ORIP 93

96

SUBIP 93

Makefile settings 17
__nios_use_constructors__ 14
__nios_use_cwpmgr__ 14
__nios_use_fast mul__ 17
__nios_use_small_printf__ 15
M 18
NIOS_SYSTEM_NAME 18
NIOS_USE_MSTEP 17
NIOS_USE_MULTIPLY 18

Memory
model 1
off-chip 4
on-chip 4

MOVIA macro 93

MOVIP macro 93

MSTEP multiplier 4

MUL multiplier 4

Multipliers 4

Nios

library routines 19

program structure 19

utilities 51-87
nios_bash utility 51, 53
nios_csh utility 51, 57
NIOS_SYSTEM_NAME setting 18
NIOS_USE_MSTEP setting 17
NIOS_USE_MULTIPLY setting 18
nios-build utility 51, 54
nios-convert utility 51, 56
nios-elf-as utility 51, 58
nios-elf-gec utility 51, 60
nios-elf-gdb utility 51, 64
nios-elf-gprof utility 51, 66
nios-elf-1d utility 51, 70
nios-elf-nm utility 51, 75
nios-elf-objcopy utility 51, 77
nios-elf-objdump utility 51, 79
nios-elf-size utility 51, 82
nios-run utility 51, 83
nm_d_txchar macro 94
nm_d_txreg macro 94
nm_debug_get_reg routine 27, 32

Altera Corporation

Nios Software Development Reference Manual Index
nm_debug_set_bp0 routine 27, 33 register maps 12
nm_debug_set_bp1 routine 27, 33 routines 27-49
nm_debug_set_reg routine 27, 33 SPI 41
nm_print macro 93 Timer 43
nm_println macro 93 UART 45
nr_debug_dump_trace routine 27, 31 user defined interface 5
nr_debug_isr_continue routine 27, 32 PIO peripheral
nr_debug_isr_halt routine 27, 32 data structure 39
nr_debug_start routine 27, 31 registers 39
nr_debug_stop routine 27, 31 routines 40
nr_delay routine 24 printf routine 25
nr_dma_copy_1_to_1 routine 27, 35 Processor
nr_dma_copy_1_to_range routine 27, 36 building 5
nr_dma_copy_range_to_1 routine 27, 38 saving configuration 6
nr_dma_copy_range_to_range routine 27, 37 Program structure, Nios 19
nr_installewpmanager routine 24
nr_installuserisr routine 22 R
nr_installuserisr2 routine 23
nr_pio_showhex routine 27, 40 Register file, size considerations 3
nr_spi_rxchar routine 27, 42 Registers
nr_spi_txchar routine 27, 42 Debug core 29
nr_timer_milliseconds routine 28, 44 DMA 34
nr_uart_rxchar routine 28, 46 PIO 39
nr_uart_txchar routine 28, 46 SPI 41
nr_uart_txcr routine 28, 48 Timer 43
nr_uart_txhex routine 28, 48 UART 45
nr_uart_txhex16 routine 28, 48 Routines
nr_uart_txhex32 routine 49 __mulhi3 20
nr_uart_txstring routine 28, 49 __mulsi3 20
nr_zerorange routine 25 _close 20
_exit 20
0 _fstat 20
_getpid 20
Off-chip _kill 20
memory 4 _read 20
shared bus 5 _sbrk 20
On-chip memory 4 _start 20, 21
ORIP macro 93 _write 20
Debug core 31
P DMA 35
general purpose 24
Peripherals 5 isatty 20
Debug core 29 nm_debug_get_reg 27, 32
DMA 34 nm_debug_set_bp0 27, 33
Off-chip shared bus 5 nm_debug_set_bp1 27, 33
PIO 39 nm_debug_set_reg 27, 33
Altera Corporation 97

Index Nios Software Development Reference Manual

nr_debug_dump_trace 31 SPI peripheral
nr_debug_isr_continue 27, 32 data structure 41
nr_debug_isr_halt 27, 32 registers 41
nr_debug_start 27 routines 42
nr_debug_stop 27, 31 sprintf routine 25
nr_debug_trace 27 srec2flash utility 11, 51, 84
nr_delay 24 SUBIP macro 93
nr_dma_copy_1_to_1 27, 35 System-level services 21
nr_dma_copy_1_to_range 27, 36
nr_dma_copy_range_to_1 27, 38 T
nr_dma_copy_range_to_range 27, 37
nr_installcewpmanager 24 Timer peripheral
nr_installuserisr 22 data structure 43
nr_installuserisr2 23 registers 43
nr_pio_showhex 27, 40 routines 44
nr_spi_rxchar 27, 42 tracelink utility 51, 86
nr_spi_txchar 27, 42
nr_timer_milliseconds 28, 44 u
nr_uart_rxchar 28, 46
nr_uart_txchar 28, 46 UART peripheral
nr_uart_txcr 28, 48 data structure 45
nr_uart_txhex 28, 48 registers 45
nr_uart_txhex16 28, 48 routines 45
nr uart txhex32 49 uart_txchar32 routine 28
nr:uart:txstring 28,49 User defined interface 5
nr_zerorange 25 Utilities 51-87
peripherals 27-49 hexout2flash 51, 52
PIO 40 nios_bash 51, 53
printf 25 nios_csh 51, 57
rn_debug_start 31 nios_elf-as 51, 58
service 21 nios-build 51,54
SPI 42 nios-convert 51, 56
Sprintf 25 nios—elf—gcc 51, 60
Timer 44 nios-elf-gdb 51, 64
UART 45 nios-elf-gprof 51, 66
uart_txchar32 28 nios-elf-1d 51, 70
Runtime support, C 20 nios-elf-nm 51, 75
nios-elf-objcopy 51, 77
S nios-elf-objdump 51, 79
nios-elf-size 51, 82
SDK 1, 12-18 nios-run 51, 83
Software srec2flash 51, 84
data structures. See Data structures. tracelink 51, 86

execution speed 2
routines. See Routines.
SOPC design considerations 1

98 Altera Corporation

	About this Manual
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	Overview
	Project Considerations
	Development Flow
	Step 1: Define the Processor
	Step 2: Build the Processor
	Step 3: Save the Processor Configuration to FLASH
	Step 4:Create and Compile the Application Software
	Step 5: Download the Executable Code to the Development Board
	Step 6: Debug the Code
	Step 7: Transition to Auto-Booting Code
	Step 8: Transition Design From Nios Development Board to Target Hardware

	GERMS Monitor
	Monitor Commands
	GERMS Boot Process for the Default 32-Bit Nios Design
	Booting From Flash Memory

	SDK Tree Overview
	The Include (“inc”) Directory
	nios.h (and nios.s)
	nios_macros.s

	The Library (“lib”) Directory
	__nios_use_fast_mul__
	NIOS_USE_MSTEP
	NIOS_USE_MULTIPLY
	NIOS_SYSTEM_NAME
	M

	Nios Program Structure
	Nios Library Routines
	C Runtime Support
	_start

	System-Level Services
	Interrupt Service Routine Handler
	CWP Manager
	General-Purpose System Routines

	High-Level C Support

	Routines
	Nios Peripheral Routines
	Debug Core
	Debug Core Register Access
	Debug Core Trace Data
	Debug Core Interrupt
	Debug Core Software Routines and Macros
	nr_debug_start
	nr_debug_stop
	nr_debug_dump_trace
	nr_debug_isr_halt
	nr_debug_isr_continue
	nm_debug_get_reg
	nm_debug_set_reg
	nm_debug_set_bp0 and nm_debug_set_bp1

	DMA
	DMA Software Data Structure
	DMA Software Routines
	nr_dma_copy_1_to_1
	nr_dma_copy_1_to_range
	nr_dma_copy_range_to_range
	nr_dma_copy_range_to_1

	PIO
	PIO Software Data Structure
	Example: Direct access to PIO

	PIO Software Routine: nr_pio_showhex
	Syntax
	Parameter
	Example

	SPI
	SPI Software Data Structure
	SPI Software Routines
	nr_spi_rxchar
	nr_spi_txchar

	Timer
	Timer Software Data Structure
	Example: Direct access to Timer

	Timer Software Routine: nr_timer_milliseconds

	UART
	UART Software Data Structure
	UART Software Routines
	nr_uart_rxchar
	nr_uart_txchar
	nr_uart_txcr
	nr_uart_txhex
	nr_uart_txhex16
	nr_uart_txhex32
	nr_uart_txstring

	Utilities
	Nios Software Development Utilities
	hexout2flash
	Usage
	Options
	Example

	nios_bash
	Usage

	nios-build
	Usage
	Options
	Example

	nios-convert
	Usage
	Options
	Example

	nios_csh
	Usage
	Example

	nios-elf-as
	Usage
	Options

	nios-elf-gcc
	Usage
	Options

	nios-elf-gdb
	Usage
	Options

	nios-elf-gprof
	Usage
	Options
	Example
	Advanced Usage

	nios-elf-ld
	Usage
	Options

	nios-elf-nm
	Usage
	Options
	Example

	nios-elf-objcopy
	Usage
	Options

	nios-elf-objdump
	Usage
	Options
	Example

	nios-elf-size
	Usage
	Options

	nios-run
	Usage
	Options
	Example

	srec2flash
	Usage
	Example

	tracelink
	Usage
	Example

	Appendix
	Appendix A: GERMS Monitor Usage
	Hardware Considerations (32�Bit Nios CPU only)

	Appendix B: Assembly Language Macros

	Index

