

74LVC169
 Presettable synchronous 4-bit up/down binary counter

Presettable synchronous 4-bit up/down binary counter

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- In accordance with JEDEC standard no. 8-1A
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Synchronous counting and loading
- Up/down counting
- Modular 16 binary counter
- Two count enable inputs for n-bit cascading
- Built-in lookahead carry capability
- Presettable for programmable operation
- Positive-edge triggered clock

DESCRIPTION

The 74LVC169 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74LVC169 is a synchronous presettable binary counter which features an internal lookahead carry and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP). The outputs (Q_{0} to Q_{3}) of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable input (PE) disables the counting action and causes the data at the data inputs
(D_{0} to D_{3}) to be loaded into the counter on the positive-going edge of the clock (provided that the set-up and hold time requirements for PE are met). Preset takes place regardless of the levels at count enable inputs (CEP and CET). A low level at the master reset input (MR) sets all four outputs of the flip-flops $\left(Q_{0}\right.$ to $\left.Q_{3}\right)$ to LOW level after the next positive-going transition on the clock (CP) input (provided that the set-up and hold time requirements for PE are met).

This action occurs regardless of the levels at CP, PE, CET and CEP inputs This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate.

The lookahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q_{0}. This pulse can be used to enable the next cascaded stage. The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CEP to CP set-up time, according to the following formula:

$$
f_{\max }=\frac{1}{\operatorname{tp}_{(\max)}(\mathrm{CP} \text { to } T C)+\mathrm{t}_{\mathrm{SU}}(\mathrm{CEP} \text { to } \mathrm{CP})}
$$

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
tPhL/tPLH	Propagation delay CP to Q_{n} CP to TC CET to TC	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \\ & 5.3 \end{aligned}$	ns
$\mathrm{f}_{\text {MAX }}$	maximum clock frequency		200	MHz
C_{1}	input capacitance		5.0	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per gate	notes 1 and 2	42	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation $\left(\mathrm{P}_{\mathrm{D}}\right.$ in $\left.\mu \mathrm{W}\right)$
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=$ output load capacity in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in MHz ; $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\left.\sum_{\left(C_{L} \times V_{C C}\right.} \times f_{0}\right)=$ sum of the outputs
2. The condition is $\mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
16-Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVC 169 D	74 LVC 169 D	SOT109-1
16-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVC 169 DB	74 LVC 169 DB	SOT338-1
16-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVC 169 PW	74 LVC 169 PW DH	SOT403-1

Presettable synchronous 4-bit up/down

 binary counter
PIN CONFIGURATION

U/D 1	16	
CP 2	15	TC
$\mathrm{D}_{0} \quad 3$	14	Q_{0}
$\mathrm{D}_{1} \triangle$	13	Q_{1}
D2 5	12	Q_{2}
D3 6	11	Q3
CEP 7		CET
GND 8	9	PE
	SFOO	

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	$\mathrm{U} / \overline{\mathrm{D}}$	up/down control input
2	CP	clock input (LOW-to-HIGH, edge-triggered)
$3,4,5,6$	D_{0} to D_{3}	data inputs
7	CEP	count enable inputs (active LOW)
8	GND	ground (OV)
9	PE	parallel enable input (active LOW)
10	CET	count enable carry input (active LOW)
$14,13,12,11$	Q_{0} to Q_{3}	flip-flop outputs
15	TC	terminal count output (active LOW)
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

Presettable synchronous 4-bit up/down binary counter

STATE DIAGRAM

FUNCTION TABLE

OPERATING MODES	INPUTS						OUTPUTS	
	CP	U/D	CEP	CET	PE	D_{n}	Q_{n}	TC
Parallel load (Dn \rightarrow Qn)	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & X \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { x } \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	
Count Up (increment)	\uparrow	h	1	1	h	X	Count Up	*
Count Down (decrement)	\uparrow	I	1	1	h	X	Count Down	*
Hold (do nothing)	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	h	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	H

$\mathrm{H}=$ High voltage level steady state
$\mathrm{h}=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition

* = The TC is Low when CET is Low and the counter is at Terminal Count.
Terminal Count Up is (HHHH) and Terminal Count Down is (LLLL).

TYPICAL TIMING SEQUENCE

Typical timing sequence: reset outputs to zero; preset to binary twelve; count to thirteen, fourteen, fifteen, zero, one, and two; inhibit

Presettable synchronous 4-bit up/down

 binary counterLOGIC DIAGRAM

Presettable synchronous 4-bit up/down

 binary counter
APPLICATION

Synchronous multistage counting scheme

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIMITS		UNIT
			MIN	MAX	
V_{Cc}	DC supply voltage (for max. speed performance)		2.7	3.6	V
	DC supply voltage (for low-voltage applications)		1.2	3.6	
V_{1}	DC input voltage range		0	5.5	V
V_{O}	DC output voltage range		0	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input rise and fall times	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.2 \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \text { to } 3.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	ns/V

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

In accordance with the Absolute Maximum Rating System (IEC 134)
Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +6.5	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage	Note 2	-0.5 to +5.5	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$	± 50	mA
$\mathrm{~V}_{\mathrm{O}}$	DC output voltage	Note 2	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{O}	DC output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	± 50	mA
$\mathrm{I}_{\mathrm{GND}}, \mathrm{I}_{\mathrm{CC}}$	DC V_{CC} or GND current		± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {TOT }}$	Power dissipation per package - plastic mini-pack (SO) plastic shrink mini-pack (SSOP and TSSOP)	above $+70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $+60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	500	500

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Presettable synchronous 4-bit up/down binary counter

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			MIN	TYP ${ }^{1}$	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	V_{CC}			V
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0			
VIL	LOW level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$			GND	V
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V			0.8	
V_{OH}	HIGH level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.5$			V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{C C}-0.6$			
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}=-24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.0$			
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$			0.40	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		GND	0.20	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$			0.55	
1	Input leakage current	$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND		± 0.1	± 5	$\mu \mathrm{A}$
I_{CC}	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$		0.1	10	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Additional quiescent supply current per input pin	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0$		5	500	$\mu \mathrm{A}$

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Presettable synchronous 4-bit up/down

 binary counter
AC CHARACTERISTICS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	WAVEFORM	LIMITS						UNIT
			$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	
			MIN.	TYP ${ }^{1}$	MAX.	MIN.	MAX.	TYP	
tPHL/tPLH	propagation delay CP to Q_{n}	1	-	5.0	8.5	-	9.5	24	ns
tPHL/tPLH	propagation delay CP to TC	1	-	6.5	10.8	-	12.8	30	ns
tPhL/tPLH	propagation delay CET to TC	2	-	5.3	8.7	-	9.7	19	ns
tPHL/tPLH	propagation delay U/D to TC	4	-	5.7	9.5	-	10.5	24	ns
tw	clock pulse width HIGH or LOW	1	4.0	1.2	-	5.0	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time $D_{n} \text { to CP }$	3	2.5	1.0	-	3.0	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time PE to CP	3	3.0	1.2	-	3.5	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time U/D to CP	5	5.5	2.8	-	6.5	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time CEP, CET to CP	5	4.5	2.1	-	5.5	-	-	ns
$t_{\text {h }}$	hold time $\mathrm{D}_{\mathrm{n}}, \mathrm{PE}, \overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$, U/D to CP	3 and 5	0	-2.5	-	0	-	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	1	125	200	-	110	-	-	MHz

NOTE:

1. These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Presettable synchronous 4-bit up/down binary counter

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{M}}=0.5 \cdot \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Waveform 1. Clock (CP) to outputs ($Q_{n}, T C$) propagation delays, the clock pulse width and the maximum clock frequency.

Waveform 2. Input (CET) to output (TC) propagation delays and output transition times.

Waveform 3. Master reset (MR) pulse width, the master reset to output ($Q_{n}, T C$) propagation delays and the master reset to clock (CP) removal times.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 4. Setup and hold times for the input $\left(D_{n}\right)$ and parallel enable input (PE).

NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance.

SC00138
Waveform 5. CEP and CET setup and hold times.

TEST CIRCUIT

Waveform 6. Load circuitry for switching times.

Presettable synchronous 4-bit up/down binary counter

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\left.\begin{array}{\|c\|} \hline 0.0098 \\ 0.0039 \end{array} \right\rvert\,$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		- ($\begin{aligned} & 94-08-13 \\ & 95-01-23 \end{aligned}$

Presettable synchronous 4-bit up/down

 binary counter

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.00	8°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT338-1		MO-150AC		-	$\begin{aligned} & 94-01-14 \\ & 95-02-04 \end{aligned}$

Presettable synchronous 4-bit up/down binary counter

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	$\mathbf{1 . 1 0}$	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0	0.65	6.6	1.0	0.75	0.4	0	0.2	0.13	0.1

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT403-1		MO-153		- ($\begin{aligned} & -94-07-12 \\ & 95-04-04 \end{aligned}$

NOTES

Presettable synchronous 4-bit up/down

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.
print code
Date of release: 05-96
Document order number:
9397-750-04498

