UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (<u>CSD</u>). F. J. Robert, J. Jordana. Grades will be available on November, 7th. Questions about the exam: office time.

Exam 1. Solve 4 of the 5 problems in separate sheets of paper

October 31st, 2019

Problem 1. 2.5p

- a) Obtain the logic expression of the function $\mathbf{F} = g(C, B, A)$ of the circuit in Fig. 1.
- b) Simplify the function to obtain a PoS or SoP.
- c) Express the logic function with only NOR.
- d) Obtain de truth table of $\mathbf{F} = g(C, B, A)$ and the corresponding equation as a product of maxterms.

Fig. 1
Combinational circuit based on logic gates.

Problem 2. 2.5p

The Fig. 2 shows a timing diagram for a functional simulation of the $Selectable_comp_8bit$ comparator when N = '0', and so, the data is unsigned in radix 2.

- a) How long is the circuit's truth table? Write some values of the truth table for the input stimulus in Fig. 2 and other radix-2 (when N = '0') and integer numbers (when (N = '1')).
- b) Represent a similar timing diagram deducing the new outputs suposing that now N = '1' and the same A and B input combinations in '0' and '1' represents data in integers (signed decimal in two's complement).
- c) Propose a plan C2 hierarchical internal design of the circuit in Fig. 2 based on simpler chips of the same kind. How many VHDL files will contain this project?
- d) Explain how does the *Comp_1bit* works (symbol and truth table) and how many maxterms have their outputs LT and EQ. Why the truth table of this circuit is incomplete?

Problem 3. 2.5p

Deduce the output $\mathbf{Y} = f(A, B, C)$ timing diagram of the circuit in Fig. 3 when the input stimulus is applied. If Min_Pulse is 1.75 μ s, how long does it take to run all the simulation of the stimulus represented?

Problem 4. 2.5p

The Fig. 4 shows the internal structure (a technology view) of the MC14560 classic chip.

Fig. 4 Symbol, structure and electrical characteristics of a MC14560 chip in CMOS technology.

Characteristic	Symbol	VDD	Max	Unit
Propagation Delay Time A or B to S	t _{PLH} , t _{PHL}	5.0	2100	ns

V _{DD} 5.0 ∨	25°C	Symbol	Min	Typ#	Max
	"0" Level	VoL	1	0 V	0.05∨
Output Voltag	e "1" Level	Voн	4.95 V	5.0 ∨	_
	"0" Level	٧ _{IL}		2.25 V	1.5 V
Input ∀oltag	e "1" Level	VIH	3.5 V	2.75 V	_

a) Calculate the chip's power consumption if each gate drains 1 μ A and is powered at 5.0 V. Calculate the limiting resistor for connecting LED ($V_{AK} = 1.65 \text{ V}$, $I_{LED} = 7 \text{ mA}$) at the chip active-high outputs.

a)

- b) Deduce the number of gate levels of each output function of the chip. Which is the longest propagation path?
- c) Deduce the propagation time of a single gate in this CMOS technology. Which is the maximum speed of operation?
- d) Which VHDL simulation allows us to measure propagation time delays in a given signal transition?
- e) Which is the logic function of the cell $\mathbf{F} = g(A, B)$ represented in Fig. 4b that is used repeatedly in this design?

Problem 5. 2.5p

The equation in Fig. 5 represents a truth table which is going to be solved in VHDL using the plan B (behavioural) and the plan C2 (hierarchical based on components).

$$y = f(x_3, x_2, x_1, x_0) = \prod_4 M(0,1,3,6,8,9,10,13,14)$$

Fig. 5
Truth table of a 4-input combinational circuit.

- a) Solve the function using a plan B, a behavioural approach. Represent a schematic or flowchart and explain how to translate it into VHDL.
- b) Solve the function Y using the method of decoders (MoD).
- c) Solve the function Y using the method of multiplexers (MoM) and a MUX_4.
- d) Invent a MUX 16 using components of the same kind (MUX 4 and MUX 2) and logic gates if necessary.
- e) Solve the function **Y** using the method of multiplexers (MoM) and the MUX_16. How many VHDL files will contain this project?